Xldb: Execution Log DataBase

Sahil Gandhi

University of California, Los Angeles
Los Angeles, California
sahilmgandhi@cs.ucla.edu

ABSTRACT

The size and the complexity of the Windows, Office, and
other related Microsoft codebases are amongst the largest
in the world. An internal distributed build tool known as
BuildXL was created to speed up the build and testing phases
of these codebases and is widely considered a success, bring-
ing down builds from many days (for the largest Windows
builds across many versions/languages) to just about 12
hours. These immense builds create immense logs, and so to
conserve space, a custom binary format was created and used
for the last couple years. This format was prone to breaking
log analyzers every time new fields were added or deleted
from log entries, and was becoming a growing pain. My in-
ternship project was to create a fully forwards-backwards
compatible log format for this tool. In the process of the de-
signing and implementing the format, Xldb (Execution Log
Data Base) was created. Xldb is a distributed logging system
built on top of RocksDb and ProtoBuf3 that enables analyzers
to be compatible with different log formats (with a well con-
trolled and designed evolving schema) and offers anywhere
between 3x and 150x better analyzing performance than the
previous log format (without sacrificing any information).
There is a 1.5x-2.5x larger storage footprint associated with
the new log format, but the performance gains and com-
patibility greatly outweigh the costs. Part of the design and
implementation was finalized during my internship at Mi-
crosft, and the rest was worked on it after as my capstone
project.

CCS CONCEPTS

« Computer systems organization — Distributed sys-
tems; Logging Infrastructure; Databases.

KEYWORDS

Distributed build engine, RocksDB, ProtoBuf, Logging, Evolv-
ing Schemas

1 INTRODUCTION

Microsoft owns and operates some of the largest codebases in
the world with the Windows Operating System, Office Prod-
uct Suite, Bing, and more. While any individual developer
only works on a small section of the codebase, the orga-
nization as a whole must still run full builds. Often times

these are also run across multiple versions as these may all
still be in support - Microsoft is (as many forget) still a B2B
business in many aspects, and these products tend to have
long lives - and the amount of code that must be recompiled
and re-tested increases. A full Windows build across several
versions and languages could easily run for several days on
a single, dedicated build machine and would go through tens
of millions of lines of code. This issue is not just prevalent
at Microsoft, but indeed at any large corporation with a ma-
ture codebase. To tackle this issue, Google created (and later
open sourced) a distributed build system called Bazel that is
able to take large code compilations and split up the work
amongst many different machines. Several other companies
have created similar alternatives, but none have gotten as
much traction or community support as Bazel.

Microsoft primarily uses the Windows build system (C#,
.NET, MSBuild) which at the current moment is not sup-
ported by Bazel [6]. The solution here was to create their
own in-house alternative known as Domino (later renamed
to BuildXL when it became open sourced). BuildXL consists
of a front-end where individuals can describe their build
process, much like a set of gradle files, and a back-end that
schedules and executes individual components on a cluster
of machines. BuildXL has been in use at Microsoft for last
three to four years and has been gaining traction since it
was introduced at a rapid pace. One of the most important
aspects of this system is its logs. These logs can range from
several megabytes to tens of gigabytes and are proportional
to the size of the builds themselves. Engineers and managers
often crawl these logs to search for ways to make the builds
faster or to look for regressions and other errors that may
pop up. Due to the enormous nature of these logs, the team
had created a specific binary compressed format, but this
format is quite prone to being broken as it is directly linked
to the build engine. On average the log analyzers that are
used to crawl the logs break once every two to three weeks
and this has become quite a nuisance for the relevant engi-
neers. The purpose of Execution Log DataBase (XIdb) is to
untie the log and log analyzers from the engine and offer
speedups and features requested by many engineers.

1.1 Contributions

Specifically the contributions of my internship and followup
capstone-project work are as follows:

e Utilizing RocksDB as the underlying database for the
logs, created initial speedups of 5x - 200x for analyzers
at a cost of increasing the storage footprint by 2x - 3x.

o Iterated on the DB design and lowered the speedup to
3x - 150x but also lowered footprint size to 1.5x - 2.5x.

e Designed ProtoBuf key/values to ensure backwards
and forwards compatibility and reduce the amount of
"breakage" of logs and analyzers.

o Decoupled analyzers from the engine allowing more
freedom for developers who do not need to recompile
engine to crack open logs.

e Introduced further API bindings to ensure a wider
variety of developers could analyze the logs in the
language they were most comfortable using.

2 BACKGROUND AND MOTIVATION

2.1 BuildXL

Unfortunately, Bazel does not support the Windows build
system (C#, NET, MSBuild), and so Microsoft Research was
tasked with creating a compatible solution. The resulting sys-
tem was BuildXL (formerly known as Domino before being
open sourced, and sometimes abbreviated as BXL), which is
a state of the art distributed build tool meant to tackle large,
complex builds. It consists of two parts, a front-end which is
written in a language called DScript, which is a subset of the
TypeScript language, and a back-end written in C#. BuildXL
was initially created to run on Windows machines only, but
with the recent push for the cross-platform .NET Core, a Ma-
cOS version was also released, and a Unix version is in the
backlog as well. An overview of BXL can be found in Figure 1

2.1.1 BXL Front-End.

The DScript front-end for BXL is designed with simplic-
ity in mind. Users can specify their dependencies, executa-
bles, publishable packages (ie. as Nuget packages) and more
through these scripts. Users can also choose to explicitly
specify output artifacts (files, executables, etc) or implicitly
specify just the output directories as "opaque directories"
which may have any number or kind of artifacts within.
In general, the explicit outputs allow for stricter and more
deterministic builds that can be easily debugged and repro-
duced. This contrasts with much less precise output build
systems like MSBuild which is only at the project level, or
CMake which is only at the Ninja target level. Furthermore,
as DScript is a subset of TypeScript, it is much easier to pick
up as TS (and other related languages like JavaScript) have
either been widely adopted by teams or are relatively easy

BXL FrontEnd BXL Scheduler
Define build artifacts Create DAG to schedule pips
Cloud Cache Master Node
Cache build artifacts Execute DAG
// \
Worker Node Worker Node Worker Node
Execute Pip(s) Execute Pip(s) Execute Pip(s)

Figure 1: BXL system overview. Log files are generated
at each node and then sent back to the master where
they are combined together and then compressed for
long term storage.

to pick up for even inexperienced developers.
2.1.2 BXL Back-End.

The C# back-end’s first job is to take the compiled DScript
output and turn it into a DAG (directed acyclic graph). The
generated build graph can be quickly compared with graphs
from previous builds to determine similarity and be checked
with the cache (more on it below) to determine how much
actually needs to be built. This feature is also known as
incremental building. Of course, if the cache is empty or
nothing has been built in the past, the entire build graph is
executed. Users can specify the number of machines that will
be used, and the graph is distributed across the machines
appropriately.

The second job of the backend is to actually coordinate,
execute, and log the distributed build. The tasks (called pips)
are sent to machines to be executed (if they have not been
cached) and then as the pips are completed, various stats
are logged. One machine serves as the master node and is
in charge coordinating and delegating the work to worker
nodes. Some log data is kept locally on worker node, and
some is sent back to the master node via RPC requests. Even-
tually, after the build is done, the worker nodes send back all
local data to the master node, and the master node writes the
build graph into the log as well. These logs are compressed
and stored for various times per the customers’ requests.

2.1.3 BXL Cache.
The caching layer of BuildXL is arguably one of the most

important layers as it in charge of deciding whether a pip
(task) must be executed or if it can be fetched from the cache.

The cache can be run locally on a local machine, or can be set
up as a "dev" cache that runs on remote machines. The default
choice is the local cache which is used by most developers,
but the larger builds on dedicated machines are configured
for the dev cache. The dev cache additionally has multiple
layers of caching that can connect to outputs from various
datacenter tools (ie. CloudBuild) and also enables peer-to-
peer caching at high network speeds. The cache layer is built
on top of RocksDB, a persistent log-structured key-value
store, where the keys are hashes (fingerprints) of various
pips and inputs/outputs, and the values are the payloads
themselves.

The caching layer uses a form of two-phase cache lookup
pattern to first probe the cache, using the hashed finger-
print of the pip or artifact in question, for a small subset of
possible outputs. This small subset can then be further nar-
rowed down for all or most of the files and directories that
are required. In the case that everything is found, then it is
considered a "cache hit", but if it is a cache miss, then that pip
is re-executed and its new contents are hashed and stored in
the caching layer. A further, more in-depth explanation of the
cache system can be found at this link: https://github.com/
microsoft/BuildXL/blob/master/Public/Src/Cache/README.
md.

2.1.4 BXL Log Analyzers.

The final component of BuildXL are the log file analyz-
ers. The initial improvements from 90+ hours down to 10-12
hours was nearly immediately observable through the dis-
tribution of the build, but getting several percent speedup
every quarter after (a common goal) requires much more
effort and digging. The best place to dig are the massive logs
generated by the build, and as such, some analyzers were
created to crawl through the logs. These analyzers ranged
from small queries such as "How much time did pip XYZ
take to execute?" to more complicated queries like "What are
the the top N dependency chains that take the most amount
of time?" and more. The analyzers are also written in C# and
developers must use the APIs provided by the BXL frame-
work in order to crack open the logs for analysis. The logs
and the analyzers will be the focus of the rest of this report.

2.2 Logs

As aforementioned, the logs created by a BuildXL build are
critical in determining regressions in build times, anomalies,
and in general any metric about the build. Teams were be-
coming more dependent on the logs as each quarter went
by, since analyzing and mining the information here is one
of the most assured methods of getting build speedups and

insights. However, there were a myriad of problems with
the current logging system that were becoming a nuisance
for both BXL team members, and other developers across
Microsoft. Notable these were:

(1) To save on space, logs were written in a custom bi-
nary format that packed all information as closely as
possible without any padding in between [4]. The log
elements contained a small header that told the an-
alyzers how many bytes the element was, and what
kind of element it is (so it can be read in appropriately).
Any changes to element contents requires the custom
serializer and deserializer to be updated, which can be
overlooked. Furthermore, documentation may not be
updated to show the latest logging information.

(2) The previous problem is accentuated by the fact that
analyzers require the custom BXL API to crack open
logs. However when the ser/deser of the elements
are changed, analyzers using the old BXL API can
no longer open newer logs. The API is not packaged
in a Nuget package, but rather requires the user to
build from source. This means that either developers
need multiple versions of BXL on their systems to ana-
lyze logs across many months (or even weeks if many
changes occur in a short time frame). A clean rebuild
to an earlier version can take anywhere between ten
minutes to one hour depending on the performance
of the developer’s workstation. This is a nuisance that
has been more frequently encountered by develop-
ers. It is particularly a problem when regression test-
ing/debugging is underway.

(3) The current format of the logs and analyzers were
also not performant at all. For small local builds, most
analyzers would take on the order of 30 seconds to a
couple of minutes, but for large builds, analyzers can
take anywhere from 10 to 15 minutes (and more) for
complex analysis. The reason behind this performance
is that the logs must be read in each time an analyzer is
invoked, and the build graph and all dependencies are
loaded back into memory. This operation itself can take
up 50 - 75 % of the analysis time. Furthermore if two
back-to-back analyzers are run, everything must once
again be loaded back into memory, causing developers
to become quickly frustrated if a single (or several)
queries have yet to yield any results.

(4) The final issue with the current analyzers is that they
are not platform agnostic. They are heavily tied to
the BXL API which is exclusively in C#, and thus all
anaalyzers must also be written in C#. This may not
have been a problem before when much of Microsoft
revolved around the .NET frameworks, but increas-
ingly more developers are exclusively using languages

https://github.com/microsoft/BuildXL/blob/master/Public/Src/Cache/README.md
https://github.com/microsoft/BuildXL/blob/master/Public/Src/Cache/README.md
https://github.com/microsoft/BuildXL/blob/master/Public/Src/Cache/README.md

like Python, C++, or Go and as such they would prefer
being able to crack open the logs and analyze them in
their own language.

The four issues presented above, in rough order of impor-
tance, were the basis of my internship project and reason
that Execution Log DataBase, XIdb, was created.

3 XLDB SYSTEM OVERVIEW

X1db can best be described as a distributed logging data-
base that allows for fast insertions during build time, and
extremely fast lookup during analysis time. This section has
been segmented into three parts. The first is what I was able
to work on during my internship, and includes the bulk of
the initial design and naive implementation of XIdb. The next
two are logical partitions/continuations of the work after the
internship finished.

3.1 Xldb Vo/V1

Our Codebase Bin
ary
Produces Executi Consumed By XlgTOD b

on Logs V1.0

V1.0

ed 10 E“g,‘“evers'w“
TS

Build Engine
V20

Xldb API
Nuget Pkg

Xl1db
Consumer B

vl v API API
10 10

Consumer N

Figure 2: Xldb v1 system overview. In addition to the
Nuget pkg API, a Python or C++ API could also be used
with relative ease.

X1db consists of two main parts: the underlying database,
and the accessor APIL Both of these were carefully picked,
and designed to mitigate the performance issues of past
logs/analyzers, and to address the compatibility issues when
the log formats were updated. As mentioned earlier, this
version of Xldb was a naive proof of concept and culminated
with users having the opportunity to transform all old log for-
mats in to the new Xldb format for future use. This involves
running an "XlgToDb" program which is still tied to engine
versions, but produces a log format that is compatible from
here on out. Nonetheless, the design and overall idea are
critical for future versions of the system. This initial version
resulted in 5x - 200x speedup in analyzers while incurring a
cost of 2x - 3x more storage. At the time, this was considered
performant enough since the main goals were to untie the

logs from the engine and enable forwards/backwards com-
patibility.

3.1.1 Underlying DB.

To speed up accesses to the logs, I needed a way to enable
random or pseudo-random access. I initially tried creating
a separate index file that could be crawled to look for off-
sets in the binary format that contained the data of interest,
but soon realized that this would lead to the same breakage
experienced in the old log format. Every time the underly-
ing binary format was changed (when fields were added or
removed), the indexing and offsets would have to be recalcu-
lated. This further results in the crawler for the index file to
have to be tied to the BXL API and be "smart" about all of
these changes. Thus I scrapped this approach and decided to
go with a database instead.

I'looked into several choices of databases including docu-
ment based DBs like LiteDB and MongoDB, a traditional SQL
DB (MariaDB) and NoSQL DBs like RocksDB. I ran some ini-
tial performance tests on these DBs by injecting dummy data
to simulate various sized builds. The results indicated that
though I could use BSON (Binary JSON) to concisely store
data and also index into it for both LiteDB and MongoDB,
the size of the DB exceeded the original compressed binary
log format by more than 10x. Similarly, the MariaDB tests
showed that size was growing beyond a reasonable bound
as the size of the simulated builds increased, and the data
was not able to be effectively split into multiple columns to
utilize joins.

The simulated results for RocksDB proved to be quite
interesting however [2]! The Cache layer of BXL already used
RocksDB for storing the cached computations and treated
the fingerprints as the keys and the objects as the values. I did
not have any such notion for the logs so for the initial testing,
I just using numerically ascending values as the keys and
the different log objects for the values. The overall storage
increase was only about 2x - 3x over the original binary
format. This substantially lower storage gain comes from
RocksDB’s ability to perform compactions over the stored
data to reduce the overall storage size. While the overall
storage space can be reduced further, at the moment for v0/1,
this was enough. There is likely no way to reduce it further
the original specialized binary format, so that will remain
the baseline for the foreseeable future.

The next step in the DB design was picking appropriate
keys to fully utilize the key-value nature of RocksDB. The
stored values needed to be forwards/backwards compatible
and so they were designed to be ProtoBuf V3 messages with
an official schema that could be carefully evolved to not
break previous formats [3] [5]. This included relying on the
ProtoBuf compiled parsers that could safely ignore missing

’ Default \ Pip \ Event \ StaticGraph ‘
Table 1: Original column families of X1db (v0/v1). The
default column is used to hold all "random" metadata
that does not fit under one of the three other column
families.

or additional fields that were not in the schema. RocksDB
by default allows for precise key-value lookups, but the BXL
Cache team had also created a "prefix-search" capability to
allow lookups for all keys that matched a particular prefix.
Thus the keys were also designed to be ProtoBuf V3 messages,
with each value ordered from the most general field to more
specific fields. The keys were also flattened so that ProtoBuf
would not insert field binary messages (for nested messages,
ProtoBuf inserts the lengths of the serialized nested message
as well).

The final detail about the DB is the use of column families.
Like tables in a traditional DB, the use of column families
allows the data to partitioned in a logical manner, and also
allows the RocksDB indexing and compactions to be done
on a column family basis (better locality). The downside is
that each column family can add up to 70 MB of overhead
(in the worst case), but this is dwarfed by the many tens of
gigabytes of data that is inserted into the DB by sufficiently
large builds. The column families used split the data between
Build Graph data, metadata, and other event data that was
emitted during the build.

3.1.2 Accessor API.

The final piece to this puzzle is the accessor API for the
DB. The main goal here was to make it simple enough to
be emulated in multiple programming languages - anything
that supports RocksDB and Protobuf V3 - yet also be as rich
as the old accessor APIL. The API was initially developed in
C#, but rigourously documented so it could be transferred
into any supported language with ease. It extensively uses
the notion of "prefix searches" to grab all possible related
objects, before applying additional filters to match what the
user may be interested in. The API was also deliberately left
to provide only high level filtering, and requires the users to
do additional filtering on objects on the receiving end. While
objects themselves maintain compatibility through proper
schema evolution, since the keys in the DB are also ProtoBuf
V3 schemas, the API does face the possibility of falling out
of sync, particularly if fields are changed or different column
families are added. To mitigate this situation, two constraints
have been created. First, fields can only be appended to a
message in ascending order, and second, a separate text file
would be added to the the folder containing the DB that

specified the DB version. If the API version is greater than or
equal to the DB version, it can successfully access the data,
else it cannot and an older API will need to be generated.
One may think that this latter situation leads to the same
issues as before where an out of sync accessor API needs
to be brought back in sync with a rebuild of the codebase.
However, the current API is not tied to the engine version,
only to the schemas of the various ProtoBuf messages, and
the API is published as packages (whether it be Python, C#
or otherwise). It is far easier to download a small package (or
to keep several copies locally) than it is to rebuild the whole
BXL codebase from scratch.

Event/DB Stats Analyzer Performance Dump Pip Analyzer Performance

At least 42x

At least 160x

Figure 3: A comparison of two analyzers that have
been ported over to the new format. Xldb performance
grows exponentially as the size of the log files grow!

3.2 Xldb V2

While v0/v1 were a product of my internship at Microsoft,
the overall system itself was open sourced and I decided
to continue working on it for my capstone. My team and I
had come up with a few other "future” work milestones that
would be tackled long after my internship ended. I consider
v2 of Xldb to be the addition of the following two features:
a new organization of the underlying DB to compact the
paths and strings, and a new Python API that can be used
by developers. The addition of the string/path compaction
results in the analyzer speedup (relative to the old analyzers
before Xldb) to be reduced to 3x - 150x, but it also reduces
the storage footprint to 1.5x - 2.5x which can result in many
gigabytes saved per build (terabytes per day, relative to the
original design)!

3.2.1 Path and String Compaction.

The first feature was a revamp of the database to utilize
less storage. In the overall system, BuildXL, paths and string
constants can take up the most amount of storage (both
memory wise and disk storage in logs). This is primarily due
to the massive number of string constants associated with

pips and paths associated various files and directories. Most
of the time, these values occur more than once, so like how
we can reuse objects or threads in an object pool/thread pool
respectively, the decision to create a "pool" for the values
was made. The results are the StringTable and PathTable
constructs which at a high level act like a key-value map:
each string constant is mapped to some integer constant, and
that integer is used everywhere that is needed. The space
savings were phenomenal, anywhere between 10% and 60%,
depending again on the size and type of build.

[Default | Pip | Event [StaticGraph [StringTable | InverseStringTable | PathTable [InversePathTable |
Table 2: New column families of X1db (v2 and beyond).
The StringTable and PathTable column families map
integers to strings, while the InverseStringTable and
InversePathTable column families map strings to in-
tegers.

A similar strategy was employed in the restructuring of
the database for v2 of Xldb. Once again, the paths and string
constants were being repeated in many places when they
could be amortized via a mapping. As the old log files are
crawled and converted, the string and path table maps are
constructed. Unfortunately due to the design of the original
classes, we cannot just traverse them separately, and so this
in-memory map must be utilized to hold the intermediary
values. After all the events and the static graph are ingested,
the two maps are written to the database. Four new col-
umn families were utilized: StringTable, InverseStringTable,
PathTable, and InversePathTable (2). All four column families
use ProtoBuf messages for both the keys and the values. The
ordinary column families map from an integer to the string
value, while the inverse column families map from string
to an integer. By using a ProtoBuf message in the inverse
column families, we can still employ the prefix-search API
to search for the integer representations of all strings of a
certain prefix (the empty string of course will match all keys
in the prefix search).

This change also required the accessor API to be changed
since several of the keys that used to be strings were now
ints instead. Furthermore, every value that used to store a
string now stores an int, so if a user wants to get the actual
path or string representation, they need to make another call
to the API to resolve the value. Unfortunately, even though
RocksDB has sub millisecond latency for accessing values,
this added complexity for every string does incur a slow-
down for analyzers. With testing several different analyzers
on a variety of builds, I saw only a speedup of 3x - 150x
relative to the old (pre Xldb v0) log analyzers. However, to
alleviate this issue, resolving the string values has been left
as an optional task for the user. If they do not care about the

representation for their particular analyzer, they need not
resolve it, or if they only care about a subset of all constants,
they can choose to just resolve those constants. This flex-
ibility allows the resulting DB change to maintain the old
speed in the case that no strings are resolved. However the
more important advantage with this new format is the space
savings. Switching to this DB format resulted in anywhere
between 8% and 30% storage savings, resulting in the overall
footprint to be only between 1.5x - 2.5x larger than the orig-
inal log files!

3.22 Python API.

C# may still be one of the most popular languages to use at
Microsoft (no licensing fees, in house experts, and more!), the
engineer and developer community has begun to adopt other
industry standards, including the widely popular language,
Python. BuildXL is largely written in C# and since all of the
old analyzers were tied to the engine, they were also written
in C#. Xldb broke this tie in, yet the new accessor API for
Xldb v0/v1 was also written in C# to show how old analyzers
could be converted seamlessly.

However, now that the system has been in place for a
couple of months, I believed it was time a new API binding
to be introduced. I chose Python since it is one of the easier
languages to pick up by students and hardened engineers
alike, and it fully supports RocksDB and ProtoBuf, two of
the main requirements of Xldb. The Python API also con-
tains a version of the prefix-search capability that the C#
API contains, but it is even more naive and thus can incur
heavy penalties if the wrong prefix searches are initiated (ie.
a full prefix search with the empty string ""). However in
terms of raw performance, the Python RocksDB module is
written in Cython and thus hooks right onto the C++ imple-
mentation of RocksDB. Thus while one may initially assume
the performance suffers due to being written in Python rela-
tive to a compiled language like C#, the Python API is still
blazing fast! One disadvantage though is that unlike the
C# API which was published as a Nuget package (internal
ring only for now), the Python module is not published any-
where since I no longer have access to the internal Microsoft
module repository. Another minor inconvenience is that the
Python proto files have to be slightly modified (flattened to
one directory structure and remove the ‘/tools/‘ directory in
front of Google packages), so I have written a helpful script
to copy over the original files and modify them on the fly!

3.3 Xldb V3

I concluded my current work on the project with v3 of XlIdb.
Previous versions of XlIdb still required manual initiation
to convert old log files into the new log format and this

is quite a hassle for developers (and is also bad from an
adoption perspective since there is a reduced ease of use for
the new product). Since XlIdb was still in a rather beta stage
during my internship, we hesitate on providing an automatic
conversion tool since there were of course legacy pipelines
and work methodologies that were heavily reliant on the
old log format. However now that it has been almost five
months since the internship ended, it is time to auto-convert
the logs.

While I could have taken a more naive approach to this
problem and just created a wrapper script that does the con-
version, this is ultimately another aspect of the codebase
that must be maintained and is prone to being broken (shell
scripts or batch files are often the most neglected and hard-
est to maintain pieces of code per my past experiences and
experiences of former team members). Instead the implemen-
tation the automatic converter went through the existing
BXL codebase and BXL scheduler. A flag (convertXldb) can
be passed in that lets the scheduler know to use the new
types of logs. Once the build is finished running and the old
log format is created, the XlgToDBAnalyzer automatically
kicks in and begins converting the logs in to the new Xldb
format. This can take anywhere between a few seconds to up
to 10 minutes, depending on the size of the logs and the type
of machine being used. A server grade machine can easily
take advantage of the parallelism in the analyzer and crunch
through the conversion at ease! Once the logs have been
converted, the old logs are deleted, except for the text based
files which are useful for easy human readability. When the
time of large builds can be on the scale of hours or tens of
hours, a few additional minutes for converting the logs is a
minor overhead for better accessibility of the log data.

4 DISCUSSION AND FUTURE WORK

The previous 3 versions (4 if you count v0) of Xldb included
the prototyping stage and then the "flushing" stage where
the system was modified per the customers’ demands. The
end result is phenomenal but it is not quite complete and
there is still work to be done! Unfortunately I no longer have
access to many of the resources that I did whilst an intern and
development has come to a standstill. This includes powerful
machines to speed up the build process, testing pipelines and
builds in various canary rings for dogfooding, and ultimately
quick access to my former team to get quick feedback and
throw my ideas around. However, should I have had these
resources, these are the following two versions of X1db that
I propose for future work to make it an even more powerful
tool for developers using the BxI system.

4.1 Xldb V4

V4 of X1db aims to do what v3 partially attempted: automatic
creation of the new Xl1db logs. However instead of being a
stage that happens after the build is finished, a more nuanced
approach would be to ditch the old log format entirely and
only write out Xldb formatted logs. There are a couple rea-
sons that this is difficult to achieve apart from not having the
right kind of resources as aforementioned, namely the back-
wards compatibility for teams that are still reliant on the old
log format for legacy pipelines and due to the performance
impact on the build itself.

The old log format creates a separate log on each machine
in the build and then combines it all in the master node. One
may think that this approach will also work in Xldb, but since
Xldb creates many intermediate dictionaries to explicitly
write information in a way that speeds up queries (ie. to speed
up the cache miss analyzers or the input/output dependency
chain analyzers), the task becomes more difficult. Some initial
testing suggests that these dictionaries will either need to
be synchronized via a cloud version of RocksDB (ie. like
how the caache is syncrhonized) or it will require message
passing between the nodes via GRPC calls.

4.2 Xldb V5: XaaS

With the full indepedence of logs from the engine and an
easy to use API that is versatile across many languages and
platforms, I think the logical evolution of Xldb is to present
it as a service: Xldb as a Service (XaaS). Instead of having
individual developers download logs to their machines and
analyzing the logs, the team could instead have ownership
over all logs for a certain date (a month or two perhaps)
and allow others to query the logs remotely. This drastically
reduces the amount of network bandwidth used for down-
loading all of the logs and also opens up the possibility for a
few other interesting features:

(1) Queries can be sent in like "jobs" which can be run
simultaneously over multiple logs. The results can be
aggregated and delivered back to the developer.

(2) A dashboard can be created for CB/CQ (continious
build, continuous querying) purposes.

(3) Triggers can be created where if a build performs a cer-
tain "trigger" action, it can automatically run queries
on the logs (in a fast manner relative to today) and
send the results to the appropriate developers.

(4) Regressions can be better tracked by both the BXL
team as well as other build engineers.

(5) Provide a log ingestion method for users to ingest
logs in their own custom programs or frameworks
automatically.

5 CONCLUSION

Codebases continue to get larger and more complex as cus-
tomers demand more, and features are supported for longer
amounts of time. Microsoft is no stranger to this issue and
to address the long build times, they created a distributed
build tool, BuildXL. Developers became increasingly inter-
ested in crawling and mining the logs produced but as the
logs became more complex, they began to break the cus-
tom binary format more often, and were slow to traverse.
Xldb was created to counter these issues by allowing for full
forwards/backwards compatibility and faster querying. It
achieves these properties through a RocksDB instance that
holds ProtoBuf v3 keys and values, and an API that can be
implemented in any language that supports RocksDB and
ProtoBuf. The resulting system is 3x - 150x faster for most
queries (at least 80% of the popular queries), and the perfor-
mance gains increase as the size of the build increases. The
storage takes a hit as Xldb requires 1.5x - 2.5x more storage
than the previous format, but it also allows the logs to be
platform independent so more developers can take advan-
tage of them. Currently production software can use v1 of
X1db, with future versions either merged into the canary
rings or (potentially) waiting to be merged in the near fu-
ture. The official repository is located at https://github.com/
microsoft/BuildXL and my capstone work can be found in the

following fork: https://github.com/sahilmgandhi/BuildXL/
tree/capstone-work.

ACKNOWLEDGMENTS

I want to acknowledge Oleksii Kononenko for mentoring
me during the internship, and Mike Pysson for being a great
manager. | also want to thank Lance Collins and Danny Van
Velzen for helping out immensely in designing and working
with the front end (dscript) parts of BuildXL. They were great
mentors and team members throughout my internship and
even as [worked on the project afterwards.

REFERENCES

[1] Apache. [n. d.]. Apache Avro. https://avro.apache.org/
[2] Facebook. [n. d.]. A persistent key-value store. https://rocksdb.org/
[3] Google. [n. d.]. Google Protocol Buffers. https://developers.google.
com/protocol-buffers
[4] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a Warehouse-scale Computer. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15). ACM,
New York, NY, USA, 158-169. https://doi.org/10.1145/2749469.2750392
Kare Kjelstrom, Kare Kjelstrom, Kare, Kare, Uber, and Uber’s Core
Infrastructure. 2018. How Uber Engineering Evaluated JSON Encoding
and Compression Algorithms to Put the Squeeze on Trip Data. https:
//eng.uber.com/trip-data-squeeze/
Microsoft. 2020. microsoft/msbuild. https://github.com/microsoft/
msbuild

[5

=

—_
=
—

https://github.com/microsoft/BuildXL
https://github.com/microsoft/BuildXL
https://github.com/sahilmgandhi/BuildXL/tree/capstone-work
https://github.com/sahilmgandhi/BuildXL/tree/capstone-work
https://avro.apache.org/
https://rocksdb.org/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/2749469.2750392
https://eng.uber.com/trip-data-squeeze/
https://eng.uber.com/trip-data-squeeze/
https://github.com/microsoft/msbuild
https://github.com/microsoft/msbuild

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background and Motivation
	2.1 BuildXL
	2.2 Logs

	3 Xldb System Overview
	3.1 Xldb V0/V1
	3.2 Xldb V2
	3.3 Xldb V3

	4 Discussion and Future Work
	4.1 Xldb V4
	4.2 Xldb V5: XaaS

	5 Conclusion
	Acknowledgments
	References

