
SIKE: An Analysis of Serializing Interfaces in Kafka Experiments

Sahil Gandhi, Kaushik Mahorker, Wenlong Xiong
University of California, Los Angeles

{sahilmgandhi,kaushikm,wenlongx}@ucla.edu

Abstract
Apache Kafka is a distributed streaming platform that is

widely adopted today for aggregating and analyzing huge
flows of real-time data. One of the key characteristics of
Kafka is the ability to be protocol agnostic for serializing and
deserializing data as one can override the SerDe interface,
but the default that is suggested to the user is Avro. We have
created the SIKE engine to profile various binary protocols
for their serializing/deserializing times and also compare their
relative performance in a Kafka consumer/producer cluster.
We evaluate on a variety of metrics such as the producer send
rates, consumer lags, broker request latency, and more. We
have found that perhaps a new serializer, Cap’n Proto, can
take the reigns for being default the serializer of choice for
Kafka experiments.

1 Introduction

Being data driven is the new norm in any corporate culture
today, whether it be in a technology firm, a finance firm,
or even in the hospitality industry. A rather critical driving
factor behind this is the sheer amount of data that can be
gathered from users from their computers, smartphones, and
IoT devices. These data schemas evolve over time and thus
any service that consumes the data and processes it must
be smart enough to work with this change and still produce
consistent results. In addition, the data needs to be processed
in an efficient manner conserving latency and size to meet the
needs of the rising volume of data.

In light of this, we leverage the extensible SerDe interface
of Apache Kafka to implement custom serializers and dese-
rializers using four protocols. We explore the performance
of these protocols with respect to metrics such as latency,
size, byte-rate and records-lag to help developers make more
informed design decisions for their data driven applications.
Our results show that while Avro is extremely performant,
Thrift and Cap’n Proto offer better serializing and deserial-
izing times and virtually no message lag on the consumer
end.

The rest of the paper is organized as follows. We provide a
brief overview of the relevant components of Kafka in Section
2 and related work in serialization profiling in Section 3. In
Section 4, we look at differences between the Binary formats
we chose to evaluate. We describe the system and design
of the profiler in Section 5 and provide an evaluation of the
different protocols as well as insights in Section 6. In Section
7 and 8, we discuss potential future work and conclude with
our final remarks.

2 Background and Motivation

Apache Kafka is a distributed streaming platform that lets
multiple producer and consumer clients durably read and
write streams of data like a messaging system [12]. Since its
introduction by LinkedIn in 2011, it has become widely used
in a variety of data-driven applications, including as a drop-in
replacement for traditional message brokers, log aggregation,
metrics reporting, stream processing, event sourcing, as an
external commit-log, etc. Most common use cases of Kafka
involve sending large volumes of structured data that follow
slowly changing schemas. Driven by this usage pattern, many
companies opt to send data in a compact binary format, seri-
alizing and deserializing them at the producer and consumer
clients.

The use of binary protocols offer many benefits over send-
ing unstructured data. Serializing data to a binary format
allows for compact storage and lower memory usage, reduced
network overhead, language-agnostic data transfer (if the
clients also implement the serialization/deserialization inter-
face), as well as the enforcement of message schemas. While
officially, Apache Kafka does not enforce any requirements
on the data transmitted (opting instead to represent messages
as pure byte arrays), there are many third-party libraries that
provide serializers/deserializers for various binary formats.

While the use of binary protocols offer many benefits over
unstructured data, they also incur overheads from the serial-
ization / deserialization process. In addition, not all compact
binary formats are created alike. Currently, the only first-party

1



Kafka client serialization/deserialization implementation is
for Apache Avro, which is provided by Confluent, a com-
pany founded by the original authors of Apache Kafka. Since
Apache Avro was first developed in 2009, other protocols
have been developed that offer increased performance in ei-
ther speed, storage size, or flexibility. While Avro has been
a default choice for good overall performance, switching to
another format may offer different trade-offs that are more
beneficial for certain data pipelines.

However, as far as we know, there have been no empirical
comparisons of existing binary formats and their performance
in the context of Kafka. Our work aims to evaluate the perfor-
mance of some of these binary protocols for a few different
typical Kafka workloads, and compare them on key metrics
such as serialization/deserialization speed, storage size, and
ease of use.

3 Related Works

While there have been no empirical comparisons of existing
binary formats in the context of Kafka, there have been several
comparisons of existing binary formats in blog posts and
Github gists.

One such comprehensive blog post is from Uber [11]. They
compare a wide variety of serialization technologies and their
performance together with different compression libraries.
While the article is comprehensive, it was written in 2016,
and they are exploring the technologies of 2014 and earlier
since they are looking retroactively at what Uber "may have
done" in the past. Uber’s analysis is based on outdated as-
sumptions (Protobuf v3 has come out since, Avro has been
incremented by five versions, and newer technologies like
Cap’n Proto exist today), and should only serve as a starting
point into serializer analysis. We wish to explore more mod-
ern serializers, as well as evaluate their performance in the
usage context of Kafka in our paper.

Similar to the Uber blog post is the jvm-serializers reposi-
tory on Github [7], which contains a comparison of more
than ten different serializers, and presents the serializa-
tion/deserialization times on the wiki page. While the reposi-
tory has been updated with modern versions of the serializers,
the wiki image has not been updated since 2016 and are no
longer up to date. Furthermore, they only evaluate based
on a single testing schema, which contains both simple and
complex (lists/nested messages) data types. We aim to pro-
vide a more up to date profiling of the serializers, and also
evaluate their performance on different schema types to see if
certain serializers are more performant based on the schema
complexity.

Finally, the performance of different binary serializers is
accentuated in a Google paper where they profiled the live
traffic and performance of ware-house servers [10]. Here they
observe that the overhead of serializing and deserializing data
to a binary format (Protobuf in their case) takes up about 10%

of the CPU cycles of an average warehouse machine. That
is a significant portion of compute resources, and equates
to millions of dollars worth of CPU time across all the data
centers. If a different serialization format is ostensibly better
for certain types of data, or better in general compared to
other binary protocols, the performance implications can save
a company much money. Our work aims to reveal any such
underlying advantage.

4 Binary Formats

In our experiments, we evaluate three binary formats in addi-
tion to the existing Avro implementation.

4.1 Avro and Schema Registry
Apache Avro is currently the default choice of binary format
for Kafka messages [1]. It was originally developed as part of
Apache Hadoop, for compact binary storage, but eventually
became a top-level project in its own right.

Avro requires users to define a schema (either using JSON
or an IDL), which describe the data fields and their types.
Avro stores its schema with the data it encodes, allowing
clients to easily read encoded data, without the need for stati-
cally generated accessors. Because the schema is stored with
the encoded data, type information and other metadata does
not need to be encoded into the binary representation. Avro
also allows for schema evolution through resolution rules,
allowing for readers and writers of Avro to use different ver-
sions of schemas. Because of this, Avro requires the schema
to be present both at serialization and deserialization time.
In the case that the reader and writer schemas are different,
Avro requires both schemas to be present. These attributes
make Avro a good overall choice for many data intensive
applications.

Confluent has made some additions to Kafka especially
for Avro. In particular, Confluent defines a Schema Registry,
which is a reliable and distributed service that allows clients
to store and retrieve Avro schemas through a REST interface.
This provides a central location for cross-language clients
to store schema metadata, and facilitate the addition of new
clients to existing data pipelines.

4.2 Protobuf3
Protobuf3 (also called protocol buffers or Proto3) is a binary
format developed at Google, and is in its third major iteration
[5]. We chose Protobuf to evaluate due to its widespread
usage and ability to support schema evolution, as well as its
low uncompressed message size (smaller than Avro according
to Uber [11]) and fast encode/decode speed.

Like Avro, Protobuf requires users to define a schema, that
allows for both simple and complex types. However, Protobuf
differs from Avro in that it requires developers to define the

2



Figure 1: Overview of the entire system

schema in a definition file, and use a separate compiler to gen-
erate the language-specific classes and message headers for
the data. In addition, Protobuf encodes some metadata into
the binary format, including an ID and type for each data field.
This means that Protobuf also allows for schema evolution
through resolution rules; a newer version of a schema is com-
patible with an older one as long as the field IDs match. This
is both an advantage and disadvantage: using a single com-
piler means that cross-language clients are generated from
a single source, but means that static code gen is required;
since Protobuf stores field metadata in the binary representa-
tion, it does not need to store the entire schema in the binary
format, but requires clients to have generated accessors from
the Protobuf compiler.

4.3 Cap’n Proto

Cap’n Proto is a binary format created by former Google en-
gineers to address the serializing and deserializing constraints
that most modern serializers have [3]. We chose to evaluate
Cap’n Proto as it claims to be infinitely times faster than Pro-
tocol Buffers (or the equivalent) and thus can save much time
in the serializing/deserializing steps.

Cap’n Proto directly interacts with objects stored in Byte-
Buffers, stepping over any serializing or parsing step directly.
It however does require developers to define the schema in
a definition file and uses a separate compiler to generate the
language-specific classes and message headers for the data.
The encoding of data formats and metadata is also sent in
this binary format, which allows for schemas to be more flex-
ible and evolve. Any new fields that are added are merely
appended to the end of the byte buffers with the appropriate
metadata. Furthermore, the generated classes allow languages
to interact with the raw bytes in a type-safe manner. Since
Kafka requires byte arrays (byte []) we will not get to exploit
the "non-serialization" advantage of Cap’n Proto, and will
have to explicitly convert ByteBuffers to byte arrays.

4.4 Thrift
Apache Thrift (originally developed at Facebook) is a binary
format coupled with a RPC framework [2] We chose to evalu-
ate Thrift due to it having similar if not better encode/decode
speed to Protobuf [11] (possibly at the cost of message com-
paction), while having better RPC support.

Thrift is similar to Protobuf in terms of usage: clients define
message fields in an IDL, and Thrift uses a single compiler
to statically generate client code to serialize and deserialize
messages to a binary format. The binary representation stores
message field types and metadata, so Avro supports schema
evolution. Thrift differs from Avro and Protobuf in that it
supports multiple binary encoding formats optimized for dif-
ferent usages (space efficiency, fast encode/decode speed, etc).
It also includes several different transport protocol implemen-
tations, and immediately supports RPC using the Thrift server
capability.

5 System Overview

We leveraged Kafka’s extensible SerDe interface to create a
profiler for custom serializers and deserializers. All compo-
nents are written in Java8 except for the analyzer/visualizer
which is in Python3.

1. The SIKE execution engine that kicks off an experi-
ment for a particular serializer. We have included sup-
port for Avro v1.9.1, Thrift v0.13.0, Protobuf v3.10.0,
and Cap’nProto v0.1.4. The execution engine is also in
charge of varying the iterations (ie. number of messages
created) and picking what kind of message is sent. The
message types are as follows:

(a) Simple message - This message type consists of
just primitive data types such as ints and strings.

(b) Complex message - This message type consists of
more complex data types such as arrays and maps.

3



(c) Nested message - This message type consists of
using other nested messages.

2. A Kafka producer that creates the messages of the type
defined by the engine, and using the custom serializer
denoted by the engine as well. It creates a fresh object for
each iteration, thus acting like a vanilla producer, rather
than creating and caching an object once and sending it
out each time. The producer’s serializer also computes
the serialized time for each message and writes it to a
CSV file. Furthermore, it also captures producer-centric
Kafka metrics and outputs them in JSON format to a
file.

3. A Kafka consumer that consumes the messages of the
type defined by the engine, and using the custom de-
serializer denoted by the engine as well. It computes
the deserialization time for each message and writes it
to a CSV file. Furthermore, it also captures consumer-
centric Kafka metrics and outputs then in JSON format
to a file. Both the producer and the consumer run in
separate threads from the main engine.

4. A Python script that takes all of the generated CSV files
and runs some analytics on the data. It also produces the
graphs that are seen in the evaluation section below. We
could have implemented this in Java as well, but Python
provides some useful libraries for data processing and
visualizations.

6 Evaluation

We conducted an experimental study, comparing two different
performance classes. The first performance class is the raw
serialization and deserialization times for each of the serializa-
tion technologies. We used three different types of messages
for each tech, which are shown in Figure 2. We also varied
the amount of messages created in each experiment, ranging
from {1k, 3k, 6k, 10k, 25k, 50k, 75k, 100k}. We ensure to
isolate the serialization and deserialization times by starting
and stopping a timer in our custom SerDe implementations,
thus removing any overhead from IPCs and only capturing
the time for the serializing/deserializing operations.

The second performance class is comparing Kafka pro-
ducer and consumer metrics with each of the serialization
technologies. We once again use the three schema types
shown in figure 2 and vary the amount of messages created,
ranging from {1k, 3k, 6k, 10k, 25k, 50k, 75k, 100k}.

We ran our experiments on a single MacOS machine, with
a dual core 2.4 GHz processor, 8 GB of RAM, and 256 GB
SSD. The single machine hosted the zookeeper instance,
the kafka broker, the producer and the consumer, with each
running on a separate thread. the single machine sufficient
for our study because we are solely interested in the relative
performance between these different protocols. Controlling

the environment we run these protocols on provides us with
the same baseline that we expect to extend to a similar dis-
tributed setting. However we acknowledge that running on a
single machine does not take into account certain factors that
may affect the absolute metrics only present in a distributed
setting.

message SimpleMessage {
int64 timestamp = 1;
string query = 2;
int32 page_number = 3;
int32 result_per_page = 4;

}

message ComplexMessage{
int64 timestamp = 1;
map<string, int32> storage = 2;
repeated int32 arr = 3;

}

message NestedMessage{
int64 timestamp = 1;
int32 id = 2;
SimpleMessage simpleMsg = 3;

}

Figure 2: The different message schemas used across the
serializers. Protobuf syntax is shown above.

- Simple:
- Avro: 100018 bytes
- Protobuf: 100017 bytes
- Capnproto: 100064
- Thrift: 100019

- Complex:
- Avro: 878 bytes
- Protobuf: 1200 bytes
- Capnproto: 2848 bytes
- Thrift: 877 bytes

- Nested:
- Avro: 100022 bytes
- Protobuf: 100023 bytes
- Capnproto: 100088 bytes
- Thrift: 100031 bytes

Figure 3: Serialized message sizes for the various
message types and serializers.

4



Figure 4: Comparison of serialization times for different binary formats.

6.1 Serializing Time
The first metric we measure is the serialization time across the
protocols and across the different types of messages. Figure 4
plots the performance of these different protocols in relation
to the amount of messages sent. We measure how well the
different protocols handle messages of varying magnitudes to
test their scalability.

One key observation is that as we increase the number of
messages we see a larger separation in median serialization
time. The additive nature of the delay in serialization time
allows us to make greater distinctions about the different
protocols asymptotically. In other words, larger samples in
terms of the number of messages give us a better view of how
serialization times are distributed.

From the figures we can ascertain a few empirical truths.
Cap’n Proto is the clear leader and is able to serialize mes-
sages several times faster than that of the other protocols
consistently across the different message types, by a large
margin. Furthermore, Cap’n Proto scales well with the num-
ber of messages as it remains fairly consistent. However,
more surprising is that Avro, the Confluent default schema
format for Kafka, has average to low performance in com-
parison to other serializers across different message types.
It has the worst average performance for simple and nested
message types, and the second worst for complex messages

(better than Protobuf). From the violin plots, we can see that
there is a long tail of serialization times for each of the binary
formats, but even then, the median time still implies that Avro
has low performance across the board. Protobuf and Thrift
have similar performance for all the different message types,
with Thrift performing slightly better for complex messages.
However, they both have much slower serialization speeds
than Cap’n Proto.

6.2 Deserializing Time

The next metric we measure is the deserialization time across
the protocols and across the different types of messages.
Knowing the serializing time of these different protocols,
one would expect to see something very similar in the deseri-
alization times.

Figure 5 plots the performance of these different protocols
in relation to the amount of messages sent. It shows that
Cap’n Proto is able to deserialize messages at a faster rate
than that of other protocols. This remains consistent across
all message types. Particularly with the complex message
type, no other protocols’ distribution of deserialization times
overlap with Cap’n Proto (per the violin plots). This illus-
trates the sheer maginitude that Cap’n Proto outperforms the
other protocols. For deserialization, Confluent’s default, Avro,

5



Figure 5: Comparison of deserialization times for different binary formats and message types.

performs very similarly to Thrift and is better than Protobuf
for simple and nested messages, with Protobuf having similar
performance for complex messages. Both the serialization
times and deserialization times suggest that using Cap’n Proto
is again the clear leader and a much better alternative than
Avro for developers.

6.3 Kafka Metrics

Kafka provides a Metric class that tracks various metrics at the
Producer and Consumer detailing the general performance
of the Producer and Consumer. When these are measured
across different protocols and message types, we discover
some interesting insights.

6.3.1 Producer

On the producer side we request Kafka for the request-latency-
avg, buffer-available-bytes, and record-send-rate metrics.

Request-latency-avg is a measurement of time-delay for
producers to send serialized messages to the broker and re-
ceive an ACK. In turn, this serves as a proxy for CPU usage
due to serialization overheads. As the producer is able to pro-
cess messages faster, it is able to send messages to the broker
faster as well. Therefore, a lower value for this metric is better.

We can see from Figure 6 that most protocols have similar
performance. Cap’n Proto, however, has increased latency
values and this is due to Cap’n Proto having extremely fast
serialization times. The larger request latency could be caused
by an overwhelmed Kafka broker and thus Cap’n Proto’s seri-
alization speed is not capable of being fully leveraged by a
single Kafka broker for a single producer/consumer.

Buffer-available-bytes is a measurement of how full the
buffer is that the producer temporarily stores records in before
sending it to Kafka. This serves as a measurement for what
operations are slowing down the producer the most: if the
buffer-available-bytes are low, that means producer-broker
communication is the bottleneck; if buffer-available-bytes
are high, that means operations like serialization are slowing
down the system. We can see that for simple messages, the
buffer is full virtually all the time, which means that network
delays dominate; while for complex messages the buffer is not
filled and the serialization process takes longer than writing
and sending the records themselves. However, we can also see
that of the protocols, Cap’n Proto results in a few sharp drops
in buffer-available-bytes for complex messages, meaning that
even for complex messages it has a low serialization overhead.
Lastly, we can see that for nested messages, all protocols
except for Avro (with schema registry) result in a full buffer,
which implies that there is a noticeable overhead from using

6



Figure 6: Average producer request latency, over an interval of 100k messages sent, for different binary formats and
message types.

Figure 7: Available bytes in the producer buffer, over an interval of 100k messages sent, for different binary formats
and message types.

Figure 8: Average rate at which producer can send records, over an interval of 100k messages sent, for different binary
formats and message types.

schema registry.
Record-send-rate measures the rate that records are pushed

out from the producer in number of records per second and

serves a proxy for message size and any overheads due to mes-
sage transport from the protocols. This is a metric we want to
be generally high as an increase in throughput means more

7



Figure 9: Average consumer lag, over an interval of 100k messages sent, for different binary formats and message types.

Figure 10: Average rate at which the consumer could consume records, over an interval of 100k messages sent, for
different binary formats and message types.

messages are ready to be processed. From Figure 8 we de-
duce that Avro has the best message send rate for simple and
complex messages and Thrift a close second. For nested mes-
sages Thrift leads consistently. Cap’n Proto’s performance
degrades for the nested message type for large numbers of
messages, but this corresponds directly with the increased
latency for the broker, so the overwhelmed broker may be
held suspect here as well.

6.3.2 Consumer

On the consumer side we request Kafka for the records-lag-
avg and records-consumed-rate metrics.

Records-lag-avg measures how much on average the con-
sumer is behind the producer based on message offsets. For
example if the message being consumed is at offset 50 and the
message being produced is at offset 75, the records-lag-avg
is 25. There are 25 messages waiting in the broker buffer
yet to be consumed by the consumer. Keeping this metric
low consistently indicates good consumer performance. This
metric is also a proxy for relative comparison deserialization

overhead as lower overhead means that the consumer can
process records more quickly. Figure 9 shows that in general
consumers have no lag, but there are a few cases when the
consumer does fall behind. These cases specifically are Pro-
tobuf for simple and nested messaged and Avro for complex
messages.

Records-consumed-rate, measures the rate at which records
are pulled from the broker. Figure 10 is almost identical to
the producer records-sent-rate. This makes sense because we
will generally consume as many records as we can produce
and no faster. This shows that the number of records that
the consumer can consume will be directly affected by how
well the producer can produce, thus placing a little more
importance on serialization time than deserialization time.

6.3.3 Schema Registry Comparison

Finally, we also evaluated the overhead of using Confluent
Schema Registry for dynamically keeping track of schema
changes versus a native Avro serializer/deserializer that stati-
cally keeps track of schema changes (ie. when a new commit

8



Figure 11: Difference between producer record send rate and consumer record receive rate, over an interval of 100k
messages sent, for pure Avro vs SR and all three message types.

Figure 12: Available bytes in the producer buffer, over an interval of 100k messages sent, for pure Avro vs SR and all
three and message types.

is pushed, it would check if the schema evolution is valid or
not, but not do the check on every message). We choose to
look at two metrics in particular here, the average record lag
by the consumer 11 and available buffer bytes 12. We can
see that for simple and complex messages, both have similar
buffer sizes, but for nested messages, the Schema Registry
version has a relatively empty buffer. This suggests, as afore-
mentioned, that the serializing cost is greater than the network
cost of transmitting the message. The lag paints a similar pic-
ture where we see that for both complex and nested messages,
the native Avro producer is creating records at a faster rate
than the consumer can receive, while the Schema Registry
version which is unable to produce as fast, also has less of a
lag on the consumer end. While these results do not quantify
exactly how much overhead Schema Registry is adding, there
is quite clearly a non-neglible overhead as the complexity of
the message increases. Perhaps in a future experiment, we
could repeat this experiment with several different schemas
and versions of the schemas to force Schema Registry to per-

form more checks and thus give a more discernible difference
(if any).

7 Future Work

While we have evaluated four different serializing technolo-
gies and measured how they perform in a Kafka cluster, there
are still several other tasks that we could work on in the future.

The first is of course adding more serializers. While gen-
erally these four are the most popular ones that are used in
industry today, there are still others that people may want to
hook up with Kafka, and they may be curious on how they
perform relative to other serializers. These include Google
FlatBuffers [4], Kryo [8], Coffer [9], MessagePack [6] and
BSON (Binary JSON). FlatBuffers are very similar in nature
to Cap’n Proto, so we expect to see equivalent performance
there, but are unsure how the others will perform. For ex-
ample, Kryo is Java specific, but aims to be even faster than
PB or Thrift at serializing and deserializing. We would also

9



compare how these serializers affect Kafka itself and when it
would be more advantageous to use these versus the four that
we profiled.

Furthermore, we evaluated the serializers with a simple
Kafka producer/consumer cluster, but did not get a chance to
do an in-depth for the Streams or Connect APIs or for Schema
Registry (except for AVRO where Confluent has already im-
plemented it). It is very possible that in these situations we
may see different serializers come out triumphant due to data
patterns in a stream, or overhead in schema-checking.

At the core, different serializers exist because they are able
to work well for different use cases. Different message types
may be more effective in certain use cases and thus different
serializers need to be used. The flexibility of an extensible
serialization/deserialization interface is what allowed us to
conduct this study, but in a production environment the selec-
tion and configuration of serializers is an overhead that can
be removed. Producers and Consumers can be extended to
dynamically change their serialization/deserialization proto-
col based on the type of message and task at hand. Creating
this abstraction would allow for faster development and avoid
schema related overhead.

8 Conclusion

Serializers come in all shapes and sizes and Kafka can eas-
ily be integrated with any of them by implementing the Se-
rializer and Deserializer interfaces. We evaluated the per-
formances of Avro v1.9.1, Thrift v0.13.0, Protobuf v3.10.0,
and Cap’nProto v0.1.4 in terms of serializing and deserializ-
ing time, as well as various metrics collected when run in a
Kafka producer/consumer cluster. In terms of raw serializing
and deserializing time, Cap’n Proto leads the pack by more
than 25% in some message cases, while still keeping the for-
wards/backwards compatibility that is desired in binary proto-
cols today. In terms of the Kafka metrics of interest such as
the consumer records lag (ie. the number of messages the con-
sumer trails relative to what the producer can create) we see
that ProtoBuf creates the most consumer lag both simple and

nested message formats, but Avro is the worst for the complex
message format. Taking these added metrics into account, it
still appears that Cap’n Proto is the protocol of choice, and per-
haps a company like Confluent or avid open source developers
may want to provide more first/third party support for the lan-
guage! We have included all of our code at the following link:
https://github.com/wenlongx/SIKE-CS239-Project.

References

[1] Apache avro.

[2] Apache thrift.

[3] Cap’nproto.

[4] Google flatbuffers overview.

[5] Google protocol buffers.

[6] Messagepack.

[7] Eishay. eishay/jvm-serializers, Jul 2019.

[8] EsotericSoftware. Esotericsoftware/kryo, Jul 2019.

[9] Gdotdesign. gdotdesign/coffer, Feb 2014.

[10] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15,
pages 158–169, New York, NY, USA, 2015. ACM.

[11] Kåre Kjelstrøm, Kåre Kjelstrøm, Kare, Kare, Uber, and
Uber’s Core Infrastructure. How uber engineering eval-
uated json encoding and compression algorithms to put
the squeeze on trip data, Dec 2018.

[12] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. 2011.

10

https://github.com/wenlongx/SIKE-CS239-Project


A Graphs

We also evaluated several other metrics for the Kafka consumer and producer across all the binary formats and message types.
Here are some graphs that we generated for those metrics.

Figure 13: Average consumer outgoing byte rate, over an interval of 100k messages sent, for different binary formats
and message types.

Figure 14: Average consumer request rate, over an interval of 100k messages sent, for different binary formats and
message types.

11



Figure 15: Difference between producer record send rate and consumer record receive rate, over an interval of 100k
messages sent, for different binary formats and message types.

Figure 16: Difference between producer record send rate and consumer record receive rate, over an interval of 100k
messages sent, for pure Avro vs SR and all three message types.

Figure 17: The consumer record request rate, over an interval of 100k messages sent, for pure Avro vs SR and all three
and message types.

12



Figure 18: The consumption rate for records, over an interval of 100k messages sent, for pure Avro vs SR and all three
and message types.

Figure 19: The producer’s send rate, over an interval of 100k messages sent, for pure Avro vs SR and all three and
message types.

Figure 20: The average request latency, over an interval of 100k messages sent, for pure Avro vs SR and all three and
message types.

13


	Introduction
	Background and Motivation
	Related Works
	Binary Formats
	Avro and Schema Registry
	Protobuf3
	Cap'n Proto
	Thrift

	System Overview
	Evaluation
	Serializing Time
	Deserializing Time
	Kafka Metrics
	Producer
	Consumer
	Schema Registry Comparison


	Future Work
	Conclusion
	Graphs

