
Parallel Kernel Execution on GPUs
Sahil Gandhi∗

Matthew Wong∗
sahilmgandhi@ucla.edu
mattwong949@ucla.edu

University of California, Los Angeles
Los Angeles, California

ABSTRACT
While Moore’s law may be slowing down, GPU’s continue to get
considerably better with each generation. In 2010, Nvidia began to
support executing multiple kernels at once (concurrently), initially
allowing only 4-16 kernels to be executed concurrently but increas-
ing it to 128 today. Kernels and machine learning problems that
used to take up all the resources of a GPU several years ago now
only take a fraction of compute power. In this report, we specifi-
cally focus on comparing the concurrent execution of kernels to
their sequential counterparts to investigate whether the overhead
of launching kernels in parallel defeats any performance gains from
the concurrency we are exploiting. We also compare these ker-
nels to their batched versions, the industry norm for maximizing
performance.

The results that we obtained suggest that concurrent kernel exe-
cution can increase performance anywhere from 1.25x to 15x, with
smaller problems seeing larger performance gains. For smaller prob-
lems, batched kernels beat the performance of concurrent kernels
greatly, but for large problems, the performances are approximately
the same with concurrent kernels actually being about 5% to 10%
faster. Our findings suggest that if there is a level of parallelism
that can be added, such as in the classifier where not all dimensions
of threads are used, concurrent kernels can provide performance
on par or even better than batched kernels. Combined with the the
paper of Jiao et al. where concurrent kernels provided almost 34.5%
better energy efficiency, perhaps these may be the future of running
many kernels [4]. Furthermore, concurrent kernel execution may
be used over batching is if different types of problems were mixed
together, as batching requires all the batches to be of the same
size/type, but heterogeneous kernels can be concurrently executed.

ACM Reference Format:
Sahil Gandhi and Matthew Wong. 2019. Parallel Kernel Execution on GPUs.
In Proceedings of CS259: Final Project Report (CS259 Spring ’19). ACM, New
York, NY, USA, 15 pages. https://doi.org/PLEASE-DONT-CLICK-ME

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CS259 Spring ’19, June 13, 2019, Los Angeles, CA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/PLEASE-DONT-CLICK-ME

1 INTRODUCTION
As GPUs become more powerful and start packing more cores and
SMs, problems that previously used up an entire GPU now only use
a fraction of them. Consider the Nvidia Quadro Plex 2200 from four
generations ago with 648 cores, the Nvidia M4 GPU from only two
generations ago which packed 1024 cores, and the Tesla V100 that
has 5120 cores [1]. Every generation nearly doubles the amount
of cores that are available, and Nvidia continues to offer other
enhancements such as Tensor cores to increase the performance of
the graphics cards.

One such enhancement is the ability to concurrently execute
kernels, which was introduced in 2010 with the Fermi architecture.
Prior to this, kernels had to be queued up sequentially, and only
after a kernel had finished all of its computation, would the next
one get an opportunity to start. At the start, only 16 kernels could
be concurrently executed - though Nvidia profiled that in reality
it appeared only 4 were truly concurrent due to hardware issues -
today we can expect up to 128 kernels to be concurrently executed.
The implications of this technology are that we no longer have
to wait for kernels to finish before executing other work on the
GPU, which is particularly important if the GPU is not being fully
utilized by one kernel or is being shared by different developer-
s/teams. Furthermore, unlike batching where all of the kernels are
of the same type or may be sharing data, concurrent kernels can be
heterogeneous and work on independent workloads.

This report intends to dive deep into the practicality and func-
tionality of using concurrent kernels for some well known kernels
such as convolution layers and classification layers. The lack of
support and other related works suggests that concurrent kernels
may not be as powerful or useful as they seem. However, we want
to confirm or reject this notion with our own data, and hope that
others can build off of it to parametrize kernels that can be run
concurrently and deliver performances that are on par or better
than the current industry norm of batching jobs together.

2 RELATEDWORK
As aforementioned, Nvidia first introduced the concept of con-
current kernel execution about nine years ago with their Fermi
architecture. Their “Streams and Concurrent Webinar” powerpoint
from 2010 explains the gist of using them and shows some cases as
to when this may be helpful (notably when there are small problems
that can be run in parallel to utilize more of the GPU) [6]. Since
then, there have been some other developments in the research
community that have explored topics such as the energy efficiency
for concurrent kernels, sharing data between concurrent kernels,
the proper ordering of kernels to maximize utilization and more.

https://doi.org/PLEASE-DONT-CLICK-ME
https://doi.org/PLEASE-DONT-CLICK-ME

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

Wang et al. in 2011 first explored the notion of concurrent kernels
and directly compared it to the sequential execution of kernels of
varying block/thread sizes [8]. On the Nvidia Fermi architecture
which supported 16 concurrent kernels (4 true concurrent kernels),
they saw that if they just queued kernels with single blocks, the
concurrent kernel implementation delivered anywhere between 10
to 16x better performance, but if they kept a fixed number of kernels
and varied the block sizes, the performance between concurrent
and sequential kernel execution was approximately the same with
concurrent kernels winning only by anywhere between 0 - 20%.

Wende et al. in 2012 looked into the proper ordering of kernels
to maximize performance [9]. They found that by using a producer-
consumer model for splitting up their work, they could get any-
where from 5x to 10x improvement to sequential kernels with their
concurrent implementation. Furthermore in their experimentation
on Fermi Nvidia GPUs, they noticed that as the number of blocks
per kernel increased (their GPU had 8 SMs available), their overall
performance quickly decreased from a full 16x speedup when each
kernel used 1 block to 1.5x speedup when each kernel used 6 or
more blocks. This matches the behavior that was observed inWang
et al..

Pai et al. in 2013 worked on the concurrent kernels problem with
a newer GPU, the Nvidia Kepler card that had 16 SMs, and also
explored using “elastic-kernels”, kernels that were more aware of
shared memory and synchronization between kernels [7]. They
observed that for a specific set of benchmarks, the Parboil 2 suite,
an elastic concurrent kernel implementation could outperform a
naive concurrent kernel implementation by 3.73x. However, they
do not compare it to a regular sequential kernel implementation,
so there is no basic benchmark to compare their results to.

Jiao et al. in 2015 was directed towards improving the energy
efficiency of GPUs as in recent years, the TDP required from GPUs
has been increasing steadily, with the failure of Dennard Scaling
being imminent [4]. Their trials on a variety of different kernel
pairs in from an assortment of benchmarks showed that by using a
DVFS (Dynamic Voltage Frequency Scaling) with the concurrent
kernel method gave rise to 34.5% better energy efficiency compared
to the best sequential kernel execution method. This suggests that
the concurrent kernel execution may indeed have other benefits
than merely providing more throughput.

Greg et al. in 2016 attempted to create a scheduler for two kernels
executing concurrently in OpenCL [3]. While their work is only
for two kernels, they have shown that a proper ordering of kernels
results in 39% better performance than a naive ordering, and intend
to create a more dynamic scheduler in the future that can support
more kernels.

There are a couple of patterns that we can observe from the
above papers. First, concurrent kernels have not been researched in
recent years when GPUs have gotten considerably larger than most
non-batched kernel sizes. It is quite possible that today the results
could be starkly different than they were in the past. Second, no
one has actually compared the performance to batching, which is
surprising as it is quite rare for companies to use a GPU for a single
convolution or classification problem (perhaps an ASIC instead
to minimize latency). We hope to explore this comparison in this
report, and present our observations.

3 METHODS
After going through the related work and Nvidia documentation/S-
tackoverflow posts we broke down our design pipeline and work-
flow as follows. For reference, we are using the Tesla V100 GPU
which supports 80 SM that have 64 cores (for a total of 5120 cores),
and has Compute 7.0 capability that allows it to run up to 128
concurrent kernels [5].

3.1 Exploring Streams and Concurrent Kernels
The first thing we did was to test an initial implementation of
concurrent kernels on a simple convolution layer. Since the kernel
execution api is asynchronous, we thought that if we just queued up
multiple kernels in a rowwithout calling CudaDeviceSynchronize();,
the different kernels would run as soon as the asynchronous call
finished. After writing several different kernels and running our
profiling script, we saw that there was no difference in the exe-
cution time or the performances of the sequential and concurrent
kernel implementations. We were shocked as the papers that we
read suggested that we should start to see some performance gains
(at the very least 1.1x-1.5x), especially if we are now running on a
much more powerful GPU that can support many more concurrent
kernels. We went back to the drawing board and the sdk examples
and came upon the cudaStream api.

Cuda assigns each data source and kernel into a data stream
which its scheduler can then queue up to the GPU, transfer the data,
and start the computation. There is a certain amount of overhead
that occurs here, about 10 µs to schedule a kernel and 4 µs to execute
it [2]. By default there is one stream that all kernels are placed
within, and only one kernel can run in a stream at a time, so even
without that CudaDeviceSynchronize();, multiple kernels in a row
would run sequentially. However multiple streams can be executed
concurrently, and if each stream is assigned one or more kernels,
then you can have concurrent kernel execution. A code example is
given below. Cuda assigns each data source and kernel into a data
stream which its scheduler can then queue up to the GPU, transfer
the data, and start the computation. There is a certain amount of
overhead that occurs here, about 10 µs to schedule a kernel and 4
µs to execute it [2]. By default there is one stream that all kernels
are placed within, and only one kernel can run in a stream at a time,
so even without that CudaDeviceSynchronize();, multiple kernels
in a row would run sequentially. However multiple streams can be
executed concurrently, and if each stream is assigned one or more
kernels, then you can have concurrent kernel execution. A code
example is given below.

Furthermore, the order that the streams are queued up is the
order in which the kernels are executed, so below we can see that if
we have 2 streams with 2 kernels each (ka1/kb1 and ka2/kb2) and if
we put Ka1 and Ka2 back-to-back, then both can be simultaneously
executed. Kb1/kb2 will be executed after the first kernels finish.

3.2 Creating a Set of Kernels
The next step was to create a set of kernels to run concurrently.
Since we had a rather large GPU, we figured that we could test a
range of kernels of different sizes to see how the concurrent kernels
would affect performance. We created two kernels, a convolution
layer kernel and a classifier layer kernel. The convolution kernel

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Figure 1: Cuda streams API example. Taken from the
Nvidia Concurrent Kernel PowerPoint. [6]

Figure 2: Cuda concurrent kernel execution schedule.
Taken from the Nvidia Concurrent Kernel PowerPoint. [6]

had 64, 128, and 256 blocks with 1024, 2048 and 4096 threads in
total respectively. The classifier kernel had 2,4,8,16,32,64, and 128
blocks with 64, 128, 256, 512, 1024, 2048 and 4096 threads in total
respectively. These kernels are all rather large, but we noticed that
at any point in time, we would have no more than 10-20% of the
threads actually running at once due to memory access latencies
requiring warps to be swapped. Thus we were confident that unlike
some of the experiments by [9] where concurrent kernels with
more threads resulted in negligible performance gains, we should
see some noticeable improvement.

Furthermore, it is important to note that the blocking, tiling,
and shared memory parameters we chose for both of the kernels
are not the most optimal. We consciously chose to do this as we
cannot expect every engineer to have the most fine tuned kernels in
the world, and we were unsure if CUDNN supported a concurrent
kernel implementation (to serve as a benchmark). Our convolution
kernel was parallelized across three dimensions of threads, and used
shared memory. Meanwhile our classifier kernel was parallelized
only across one dimension of threads and used tiling heavily. These
will be key parameters to keep in mind when we talk about batched
kernels in a later section.

3.3 Profiling Latency and Throughput
To calculate the latency and throughput of the kernels, we timed the
execution for the computation part of the kernel (we did not time the
memory transfers) and calculated the total number of computations
(Nn ∗ Ni ∗ 2 ∗ Nb and nxpad ∗ nypad ∗ Nb ∗ Nn ∗ Ni ∗Ky ∗Kx ∗ 2
for classifier and convolution respectively, where Nb = number of
kernels) and divided it by time, respectively.We created a bash script
to run through all of the different sizes of kernels and outputted the
latency and throughput results to a csv file so that we could graph
it. All of the different profiling scripts take about 8-10 hours in
total to run, with the convolution ones taking about 1-2 hours each
and classifier ones taking 3-4 hours each. We ran the convolution
kernels for 1,2,4,6, ... 20 concurrent kernels and the classifier kernels
for 1,2,4,6, ... 20, 30, 40, 50, 60 concurrent kernels.

3.4 Creating Batched Kernels
Finally, we observed that none of the related works compared the
concurrent kernel execution performances to the batched kernel
variant that is the industry norm today. We thus modified our
kernels to support batching. For the classifier kernel, we could
just add another dimension of threads and surround the old kernel
code with a for loop to go through the different batches. For the
convolution though, we had to move one of the dimensions of
threads from being used on the output layer to being used on the
for surrounding the old kernel code. We re-profiled the sequential
and concurrent performances for this new convolution kernel to
make a fare comparison. Furthermore, we used the same number of
batches as concurrent kernels above (1,2,4,6, ... 20 for convolution
and 1,2,4,6, ... 20, 30, 40, 50, 60 for classifier).

4 METHODOLOGY
To evaluate our work, we tookmany different kernel sizes and batch-
sizes/concurrent-counts, and profiled the latency and throughput
for them using our shell scripts. We tried to get a wide range of
kernel sizes and kernel counts to see how different workloads would
affect the performance. Primarily we were looking to see the point
where we would no longer see any improvement with concurrent
or batched kernels since the GPU would be fully utilized, and were
also trying to observe the diminishing speedup reported by Wende
et al. when kernels got very large [9].

Due to the two different convolutions that we had to create, we
did not have a fair comparison between the concurrent execution
for conv1 and the concurrent execution for conv2 since an entire
dimension of parallelism was missing from conv2 (since we had
to use those threads instead for the batched version of the kernel).
Thus the performances for conv2 are significantly lower than those
for conv1, and the batched version for conv2 is naturally better
than the concurrent or sequential conv2 implementations.

Furthermore, as aforementioned, our classifier and convolution
kernels are not the most optimized kernels. We chose to keep them
relatively un-optimized since we wanted to observe how differ-
ent block/thread counts would affect the final performance when
running sequentially vs concurrently vs when batched. A fully op-
timized kernel that used far more of the GPU with a batch size of 1
may not see the same performance gains that we observed for the

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

concurrent/batched runs since there are not many resources left
on the GPU to divide amongst more kernels.

Finally, to make our evaluation a bit more general, we decided to
also run our kernels on an Nvidia M60 GPU on the AWS g3s.xlarge
instance. This GPU has 16 SMs that we can use, for a total of 1024
cores, so it is about 1/5 the size of the Tesla V100 that we had
available from the professor. The results that we got from testing
on this GPU are quite different from the V100 GPU results (to say
the least), and we will briefly touch on them in the evaluation
section below.

5 EVALUATION
To not clutter the report, we have added all the graphs to the ap-
pendix of this report.

5.1 Sequential vs Concurrent Convolution 1
The sequential execution of the first convolution kernel we im-
plemented increased linearly in execution time as the number of
kernels increased. Also, the GFLOPS stayed constant for all input
and output sizes that we tested. In other words, the GFLOPS was
independent of the number of kernels being executed, which is
logical for a sequential implementation where the GFLOPS should
neither be increasing nor decreasing.

The concurrent execution of the same convolution kernel per-
formedmuch faster than sequential execution.We observed speedup
of execution time in the range of 5x - 15x for the different test cases
that we were profiling. This resulted in a much higher maximum
throughput of 750 GFLOPS for concurrent execution versus the
300 GFLOPS for sequential execution. We conclude that concurrent
execution of the kernels had larger utilization of the GPU’s cores
and other resources, since concurrent kernels could be switched
in while others were waiting to hide latency of memory accesses.
However, we also notice that the throughput drops when the num-
ber of kernels increases past the peak throughput. We reason that
the GPU resources become saturated after this point, and execut-
ing more kernels concurrently cannot raise utilization any further.
Instead, the overhead of launching and managing more kernels
increases total latency of context switches, decreasing throughput.

5.2 Sequential vs Concurrent vs Batched
Convolution 2

We implemented a second convolution kernel that was capable of
batching, and ran the same sequential and concurrent tests that
we had profiled for the first convolution kernel. We also ran the
same tests in a batched version, in which only one kernel would be
executed to run all work that normally would have been distributed
across multiple kernels.

In comparing the sequential and concurrent executions of this
second convolution, we notice similar patterns to that of the first
convolution. Sequential execution increased linearly with respect
to the number of kernels, and GFLOPS stayed mostly consistent,
unaffected by the number of kernels. The sequential execution had
odd spikes of performance when the number of kernels was low,
which we could not explain and was probably due to other factors
we could not control within Cuda or the GPU. Aside from this, the
concurrent execution times were faster than sequential, achieving

speedup in the range of 1.4x - 2x. The throughput of this second
convolution was similar in trend to that of the first convolution,
since it also peaked at a maximum before dropping as number of
kernels increased. Again, we reason that the causes for this drop are
saturation of GPU resources and overhead of concurrent kernels.

The batched execution of this convolution had much higher
performance than the concurrent version did, achieving as much as
8x speedup for most batch sizes. The maximum throughput peaked
at about 600 GFLOPS, linearly increasing as the number of batches
increased. This is a notable difference compared to concurrent and
sequential executions, which seem to plateau or fall with increasing
number of kernels. There is no overhead of launching andmanaging
multiple kernels, and all of the GPU’s resources are allocated to
this single kernel. As batch size increases, the kernel has more
computation to distribute among blocks, allowing for efficient GPU
utilization. It is noted that this throughput is lower than the first
concurrent-convolution’s maximum throughput of 750 GFLOPs.
However, to give this second convolution the ability to perform on
batches, we removed a level of parallelism that the kernel could
have distributed among thread blocks, so it is not a fair comparison.

5.3 Sequential vs Concurrent vs Batched
Classifier

We also implemented a classifier layer on which we could run pro-
filing tests. We wanted to see if similar results would be seen with a
different type of kernel. For sequential execution, we notice that ex-
ecution time increases linearly as the number of kernels increases,
similar to the convolution results. Likewise, the throughput seems
to plateau with the increasing number of kernels. This is reasonable
since sequential execution should not increase throughput.

Comparing sequential and concurrent executions of the classifier
layer, we notice that some of the execution times of concurrent
kernels were slower than the sequential counterparts. For test cases
with smaller input and output sizes, concurrent kernels were able to
produce speedup in the range of 1.5x - 2.0x. This allowed the max-
imum throughput on concurrent kernels to achieve 150 GFLOPS
compared to the sequential maximum of 100 GFLOPS. However,
for test cases with larger sizes, concurrent execution was slower
than sequential execution. We reason that the overhead of concur-
rent execution was much greater than executing sequentially. Since
the classifier kernel was not optimized, data reuse was also not
optimized. We suspect that the concurrent kernels were competing
for memory resources when the problem size became too large,
increasing latency of memory reads beyond what could be hidden
by concurrency. Sequential kernels did not encounter this overhead,
allowing them to finish faster.

The batched execution of the classifier resulted in approximately
the same performance as the concurrent kernel implementation
for the four larger kernel sizes. In fact, for these four larger kernel
sizes, the concurrent classifier actually performed about 5% to 10%
better than the batched versions. However for the smaller three
problem sizes, the batched classifier almost 2x better as the number
of batches went up. This suggests that the few microseconds of
overhead for the smaller problems that is introduced in the concur-
rent implementation affects the overall performance considerably
(since the execution time here is also in the order of microseconds).

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Batching does not suffer from this overhead since only one kernel
is ever queued and launched. However what is more important
about this conclusion is that for classification layers, we see that
concurrent kernels can provide equivalent if not better performance
and are thus worth a deeper investigation on some of the state of
the art kernels (such as CUDNN).

5.4 AWS M60 Results
We ran all of our profiling scripts with the same number of blocks
and batch counts for the different kernels on an AWS g3s.xlarge
instance. While the GPU is considerably weaker than the Tesla
V100 GPU, the results are not as impressive or as conclusive (but
still not completely inconclusive either) as with the ones discussed
above.

For convolution 1, the concurrent kernel implementation is about
1.2x - 1.4x faster than the sequential implementation but it quickly
saturates within the first concurrent 4-6 kernels that were executed.
This lines up quite similarly to the results of Wende et al. where
they only saw 1.2x improvement with concurrent kernels if the
kernels had more than 1 block worth of work to do. Our kernels
for convolution had between 64 and 256 blocks to compute, so the
results match up [9].

For convolution 2, we see that the concurrent kernel implemen-
tation initially performs about 2x better than the sequential version
until 6 kernel mark after which the performance quickly dives to
be the same as the sequential version. This intuitively does not
make sense, as even if the GPU is fully saturated or over saturated
it should still deliver performance that is larger than the purely
sequential version. The batched implementation does not suffer
from this though as the performance for batched conv2 continues
to increase as the number of batches increased till the 18 batch mark
before falling slightly as the GPU got over saturated. Despite this
drop, it still provided more than 6x throughput than the sequential
and concurrent kernel versions at 20 batches.

For the classifier, we observed that the for the larger problems,
the concurrent, sequential and batched kernels all resulted in the
same performance. However the smaller problems sizes saw no-
ticeable improvement with the concurrent and batched offering
approximately the same performance (2x to 5x better than the
sequential kernel implementation).

6 CONCLUSION
In conclusion, we can see that concurrent kernel execution is a
pretty powerful tool that for certain problems can provide com-
parable or better performance to batching. We saw anywhere be-
tween 1.5x to 15x throughput improvement from switching from
sequential to concurrent kernel execution. With the classifier, we
saw approximately the same performance between concurrent and
batched kernels, suggesting that for problems with limited amounts
of memory re-use and large overall memory requirements, the two
methods can provide comparable performance. We saw however
with the second convolution kernel that the batched variant pro-
vided anywhere between 2x to 8x better performance over the
concurrent variant. This was likely due to the kernel being severely
under-optimized after we took out one of the dimensions of threads
from the original convolution problem. Although it is not a fair

comparison to make, we can see that the batched conv2 perfor-
mance is actually lower than the concurrent kernel performance
for conv1 by about 1.2 - 1.4x. Overall though, it seems like concur-
rent kernel execution can be a worthy contender to the batched
kernel execution that is the industry norm today.

For future ideas in expanding this work, we considered several
different paths. One idea was looking into heterogeneous sets of
kernels. As wementioned earlier, batching requires the same type of
kernel to be executed. Thus, with sets of individually unique kernels,
batching to increase performance is no longer an option. Concurrent
execution is the next option, for which we could investigate the
performance gains. Another idea was investigating CUDNN to
see if we could modify it for concurrent kernel execution. If the
modifications were possible, we could profile the fully-optimized
kernels and measure the performance changes.

Currently, we only considered performance gains in computation
from executing kernels concurrently. However, there are multiple
parts to consider when running on the GPU, such as copying mem-
ory to the device (H2D) and copying the results back from the device
(D2H). These memory copies can be executed asynchronously by
working in conjunction with cudaStream objects. Considering per-
formance gains from concurrently performing memory copies and
computation, would inflate our results, but is still worth investigat-
ing.

We also were unable to investigate how Tensor cores would
affect the performance. Tensor cores are limited in numbers, kind
of like how SMs were in the past, so we could quickly saturate our
supply of them with even a couple kernels.

7 STATEMENT OF WORK
Both Matt and Sahil split the work roughly equally, with the two
of us working on different parts of the report and presentation,
creating the different kernels and shell scripts and analyzing the
results. All code can be found at the following link: https://github.
com/sahilmgandhi/cs-259-final-project.

REFERENCES
[1] 2019. List of Nvidia graphics processing units. https://en.wikipedia.org/wiki/

List_of_Nvidia_graphics_processing_units
[2] MichaelMichael 3, JezJez 1, and srodrbsrodrb 979920. [n. d.]. How bad is it to

launch many small kernels in CUDA? https://stackoverflow.com/questions/
27038162/how-bad-is-it-to-launch-many-small-kernels-in-cuda

[3] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. 2016. Fine-
Grained Resource Sharing for Concurrent GPGPU Kernels. (2016).

[4] Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving
GPGPU energy-efficiency through concurrent kernel execution and DVFS. 2015
IEEE/ACM International Symposium on Code Generation and Optimization (CGO)
(2015). https://doi.org/10.1109/cgo.2015.7054182

[5] Nvidia. [n. d.]. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#features-and-technical-specifications_
_technical-specifications-per-compute-capability

[6] Nvidia. [n. d.]. CUDA Conccurent Programming. https://developer.download.
nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

[7] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving
GPGPU concurrency with elastic kernels. ACM SIGPLAN Notices 48, 4 (2013), 407.
https://doi.org/10.1145/2499368.2451160

[8] Lingyuan Wang, Miaoqing Huang, and Tarek ElGhazawi. 2011. Exploiting concur-
rent kernel execution on graphic processing units. 2011 International Conference
on High Performance Computing & Simulation (2011). https://doi.org/10.1109/
hpcsim.2011.5999803

[9] Florian Wende, Frank Cordes, and Thomas Steinke. 2012. On Improving the
Performance of Multi-threaded CUDA Applications with Concurrent Kernel Exe-
cution by Kernel Reordering. 2012 Symposium on Application Accelerators in High
Performance Computing (2012). https://doi.org/10.1109/saahpc.2012.12

https://github.com/sahilmgandhi/cs-259-final-project
https://github.com/sahilmgandhi/cs-259-final-project
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://stackoverflow.com/questions/27038162/how-bad-is-it-to-launch-many-small-kernels-in-cuda
https://stackoverflow.com/questions/27038162/how-bad-is-it-to-launch-many-small-kernels-in-cuda
https://doi.org/10.1109/cgo.2015.7054182
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://doi.org/10.1145/2499368.2451160
https://doi.org/10.1109/hpcsim.2011.5999803
https://doi.org/10.1109/hpcsim.2011.5999803
https://doi.org/10.1109/saahpc.2012.12

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

A APPENDICES
In order to not clutter the report above, we added all the images
of the graphs below. The first section contains the images for the
Tesla V100 GPU, and the second for the M60 GPU.

A.1 Tesla V100 GPU Graphs

Figure 3: Sequential and concurrent convolution
performance.

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Figure 4: Sequential and concurrent convolution 2
performance.

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

Figure 5: Batched convolution 2 performance.

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Figure 6: Sequential and concurrent classifier performance.

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

Figure 7: Batched classifier performance.

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

A.2 AWS M60 GPU Graphs

Figure 8: Sequential and concurrent convolution
performance.

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

Figure 9: Sequential and concurrent convolution 2
performance.

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Figure 10: Batched convolution 2 performance.

CS259 Spring ’19, June 13, 2019, Los Angeles, CA Gandhi and Wong, et al.

Figure 11: Sequential and concurrent classifier
performance.

Parallel Kernel Execution on GPUs CS259 Spring ’19, June 13, 2019, Los Angeles, CA

Figure 12: Batched classifier performance.

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Exploring Streams and Concurrent Kernels
	3.2 Creating a Set of Kernels
	3.3 Profiling Latency and Throughput
	3.4 Creating Batched Kernels

	4 Methodology
	5 Evaluation
	5.1 Sequential vs Concurrent Convolution 1
	5.2 Sequential vs Concurrent vs Batched Convolution 2
	5.3 Sequential vs Concurrent vs Batched Classifier
	5.4 AWS M60 Results

	6 Conclusion
	7 Statement of Work
	References
	A Appendices
	A.1 Tesla V100 GPU Graphs
	A.2 AWS M60 GPU Graphs

