
IoTShark: Monitoring and Analyzing IoT Traffic

Sahil Gandhi, Max Wang, Daniel Achee
University of California, Los Angeles

{sahilmgandhi,yingbowang, dpachee}@ucla.edu

Abstract
IoT devices continue to flood stores and homes at alarming

rates with no indication of slowing down. They provide help-
ful functions from controlling lights, blinds, networks and
more, but at a great cost. Both the devices and the services
are controlled by the same company (often times) and thus
users have no idea what exactly is being transmitted. There
are tools to set up man-in-the-middle attacks and sniff the
network, but they require some non-negligible time to set
up and require extensive knowledge about computer security.
We present IoTShark as a bootstrapping tool to quickly let
users hook onto an IoT device on their network and monitor
its activity. They can store these "traces" as csv files for long
term use and can also quickly view graphs and statistics of
their traces in a GUI to observe if any extra or anomalous
network traffic is being generated by the devices.

1 Introduction

In recent years there has been a proliferation of voice assis-
tants in people’s homes. These useful IoT devices provide
a convenient voice interface for users, but also present some
privacy concerns as they are an always-on listening device.
Companies selling these products, such as Amazon, claim
that the devices are constantly listening for a keyword, such
as "Alexa", and only after hearing this keyword, record and
process what users say. Therefore, anything a user says be-
fore a keyword is issued and after their voice transaction has
occurred is not recorded and is private. Unfortunately, there
is no easy way for a user to verify that the device is upholding
these public statements and the privacy agreement. Compa-
nies do admit that what a user says following this keyword
is used for targeting advertisements and customizing content.
This creates a conflict of interest as there is a financial incen-
tive for companies to collect more voice data on their users
and abuse their agreements.

These devices are relatively new and have emerged due
to advances in natural language processing. These advances

have allowed for fairly accurate keyword detection at the
edge device in real time without the need to send the data to
the cloud. With the increased accuracy of natural language
processing and the ability to extract more semantic meaning
from phrases, these devices are able to provide services that
make them attractive to consumers and advertising agencies
alike.

1.1 Background and Motivation
There are many players in the market, with the most popular
being Amazon Alexa, Google Home Assistant, Apple Siri,
and Microsoft Cortana. There is no standardization amongst
voice assistants, with each using different protocols and traffic
patterns. These devices typically encrypt the traffic. This
encryption is a double edged sword as it both protects a user
from attackers sniffing their data, but also prevents the user
from auditing the behavior of the device.

Given that voice assistants appear to be only expanding in
popularity and are projected to be a 7.8 billion dollar market
by 2023 [6], it is imperative that users, even those that are not
technically sophisticated, can easily audit and understand the
behavior of their devices.

2 Related Work

Given that the data being transmitted across IoT devices is
encrypted (end-to-end) it is quite difficult to discern what
exactly is being transmitted, and even complicated man-in-
the-middle style attacks can’t be used since the data payload
format and security cert /authentication format are unknown
to an auditor. Despite these hindrances, there has been some
work in the field by bloggers and researchers to capture the
information being transmitted and infer some patterns.

Blog posts such as [3] and [5] go into great detail for setting
up man-in-the-middle style proxies to capture all data being
sent across the network by an IoT device (a Google Home
and an Amazon Echo respectively for these blogs) and use an
application such as Wireshark to sniff packets and determine

1



whether they originated from an IoT device. We use and build
off of these techniques to capture data from our own IoT de-
vices during our experiments and for creating our deliverables
mentioned below. However, these blog posts are not always
easy to follow without extensive computer science knowledge
and are often times outdated. We aim to create a plug and
play tool that takes this complexity away from the user.

In academia, there has been some work on this topic but
often it is trying to change the existing IoT model to allow
the user to see unencrypted traffic. An example of this would
be TLS-RaR, which would allow a user to audit a device
given the manufacturer consents and modifies their devices
to support TLS-RaR [7]. We take a more cynical approach
and don’t believe that manufacturers are going to spend any
money to make their devices more transparent because of the
conflict of interest mentioned before. Therefore, we want to
develop a tool to infer as much as possible given the traffic
will be primarily encrypted.

Although we weren’t aware of this tool during our prelimi-
nary research and development, we have recently discovered
a tool called IoT Inspector [4]. This tool has similar goals as
IoTShark, which we believe demonstrates the importance of
our work. Although our tools are similar, users of IoT Inspec-
tor must agree to send their collected traces to the research
group at Princeton who developed it. However, we strive to
create a tool where a user’s data is truly their own and not
shared to any third parties. Furthermore, IoT Inspector is not
compatible with the latest MacOS Catalina, prohibiting many
users like ourselves from leveraging it.

Lastly, as more modules (“skills“ in the Alexa world) are
created, our smart assistants become ever smarter and are able
to do more, including such sensitive tasks like writing emails,
calling other individuals, and more. The following paper, [2],
determines the relative ease with which a hacker can mimic a
user and send off malicious requests. Even someone without
malicious intents can take advantage of the information and
skills of a voice assistant and breach a user’s privacy. Since
2014, when the previous paper was published, Google, Ama-
zon and others have taken the initiative to alert users after their
device was accessed (and send a transcript /recording of the
voice data) and protect some sensitive information. However
the casual user is not aware of the repercussions of purchasing
and using the device.

We hope that our monitoring tool can serve as this "wake
up" call that the smart assistant is a very versatile device that
should be treated with the same level of privacy and scrutiny
that we treat our laptops /phones. Monitoring what it is doing
should be easy enough for the common non-technical person
to set up on their own.

3 System Overview

IoTShark consists of three main components:

Figure 1: Overview of the system. The laptop running
IoTShark acts as a man-in-the-middle for the IoT device
and the router. As it captures the traffic, it presents the

user with some useful information and graphics.

1. A Man-in-the-Middle attack that directs all traffic be-
tween the IoT device and the gateway router through the
user’s computer

2. A sniffer that sniffs on this traffic and produces a csv file
of all the captured data.

3. Dynamic and static graphs that portray the captured
traces as well as statistics generated from the csv data

3.1 Host Discovery and Man-in-the-Middle
Attack

In a normal setup, the host laptop is connected to the same
Local Area Network (LAN) as the target IoT device (either
wirelessly via Wi-Fi or by wired connection to the router).
The tool has to know the IP address of the device and the gate-
way router before performing the Man-in-the-Middle attack
to the target device. It offers three methods to start gathering
this information when the tool is executed:

1. The user directly gives the two IP addresses as command
line arguments.

2. The user gives the subnet address, subnet mask and the
gateway router’s IP address.

3. The user gives nothing.

ARP spoofing immediately starts in Case 1, while the tool
first scans all IP addresses in the user’s entire subnet to dis-
cover all connected devices in Case 2 and 3. It scans the
user-provided subnet (Case 2) or a set of pre-defined subnets
common in home Wi-Fi routers (Case 3). nmap is used to
perform the address and port scanning. The tool tries to set
up TCP connections with SYN bit set to 1000 common ports
of each IP address, discover connected devices and their open
ports, and deduce device’s hardware and software character-
istics based on its TCP response patterns. nmap reports the

2



network-layer IP address, link-layer MAC address, the hard-
ware vendor and the running Operating System of each device.
A list of discovered hosts with this information is provided
to the user in a command-line interface. The user would then
be able to recognize and select the target IoT device to start
ARP spoofing.

To achieve the Man-in-the-Middle attack, essentially the
user’s laptop identifies itself as the target IoT device to the
gateway router and as the gateway router to the IoT device. In
the TCP-IP network stack, the network-layer IP packets are
wrapped inside link-layer data frames for local data transmis-
sion in hardware, with a MAC address in the frame header
that uniquely identifies each network interface. The Address
Resolution Protocol (ARP) in the link-layer handles discov-
ering hosts’ MAC addresses and translation between an IP
address and a MAC address. Thus to achieve the goal, our
tool repeatedly sends link-layer ARP Announcement frames
to the two devices with faked IP address-to-MAC address
translation. First, it sends out ARP Probes over broadcast
Ethernet frames to get MAC addresses of the IoT device and
the gateway router in their responses. It then periodically
sends ARP Announcements to the IoT device with a mapping
from the gateway router’s IP address to the laptop’s MAC ad-
dress, and to the gateway router with a mapping from the IoT
device’s IP address to the laptop’s MAC address. All pack-
ets to be delivered to the two hosts would then be delivered
to the laptop that enables traffic analysis. Also, it’s neces-
sary to make sure IP packet forwarding is enabled in the user
laptop’s firewall settings, so these diverted packets will be
automatically forwarded to the correct host specified in the IP
header and normal two-way communication would not be dis-
turbed. These ARP Announcements are sent every 2 seconds
while the tool is running until it receives a Keyboard Intercept
signal from the user. In this case, it announces the correct
IP-MAC address translation to the two devices, terminates
the Man-in-the-Middle attack and exits the program. The
ARP spoofing is done by the scapy network packet manipu-
lation framework. We conducted the experiments in macOS
Catalina and IP packet forwarding is explicitly enabled by a
setctl command that sets BSD kernel state.

3.2 Sniffing the Traffic

After the ARP spoofing has started, all incoming and outgo-
ing network packets going through the user’s computer are
sniffed using the pyshark framework. Running in a sepa-
rate thread, the sniffer first filters out relevant IP packets that
have the IoT device’s IP address to be in either the "source"
or "destination" header. It also detects the packet to be ei-
ther incoming traffic to the IoT device or outgoing traffic
from the IoT device by checking the same two header fields.
Then each packet is classified by their application-layer and
transport-layer protocols: HTTP/HTTPS/Other for the former
and TCP/UDP/Other for the latter. Once the sniffer collects

a certain amount of packages, currently five, it writes the
packets’ metadata to a csv file. This metadata includes:

1. The timestamp of the packet

2. The incoming or outgoing bytes of the packet

3. The source and destination IP address of the packet

4. The source and destination port of the packet

5. The application-layer and transport-layer protocol of the
packet

Additionally, we gather some overall statistics of all sniffed
packets before the user exits a Man-in-the-Middle attack ses-
sion. These statistics are saved in another csv file and pre-
sented in a web page as described in the following sections.
This data includes:

1. The total number of incoming and outgoing bytes trans-
mitted over this session

2. The aggregated number of incoming and outgoing bytes
for each application-layer protocol (HTTP, HTTPS,
Other) and transport-layer protocol (TCP, UDP, Other)

3. The aggregated number of incoming and outgoing bytes
for each port on the source hosts and destination hosts

4. The aggregated number of incoming and outgoing bytes
for each IP address

5. The ISP name of every remote host given its IP address

3.3 Graph Generation and Statistics
After the sniffing session has accrued enough captured packets
to write to the csv file, our tool spawns a thread that runs
a Flask web server which the user can access by visiting
localhost:5000 on the browser of their choice. This web
server reads from the csv and in real time as packets are being
captured, plots them to a graph. This graph was implemented
using the client-side JavaScript library Chart.js. This graph
updates every second and can be toggled to show any subset
of the following:

1. Incoming bytes

2. Outgoing bytes

3. Incoming TCP bytes

4. Outgoing TCP bytes

5. Incoming UDP btyes

6. Outgoing UDP btyes

7. Incoming other transport protocols btyes

3



8. Outgoing other transport protocols btyes

9. Incoming HTTP btyes

10. Outgoing HTTP btyes

11. Incoming HTTPS btyes

12. Outgoing HTTPS btyes

13. User talking to device

All of them except for the last are extracted from the captured
packet headers and aggregated over the last second. If the user
is talking to the device is determined by the user pressing the
SPACE bar during the capture. The intention of this is to make
it easier to denote on the graph when the user triggers the
voice assistant for the purposes of experiments. In addition
to the graph, the web page contains the total bytes for the
session for each of the above categories, which also updates
in real time.

In order to analyze csv files of previous sessions, our tool
can be ran in a mode where you supply the path to the csv and
the tool will generate a static graph of the session traffic. This
static graph was implemented with the library plotly and
similarly can be toggled to show all of the same categories
as the real time graph. Additionally their are a variety of
statistics also displayed, with a subset being shown in Figure
4. The most useful statistic is the ISP map, which shows
which company owns each of the IP addresses that the device
connected to during the session.

4 Evaluation

We use IoTShark to capture and evaluate traces from two
devices: a third-generation Amazon Echo Dot and a Google
Home Mini. According to Amazon and Google’s device
manual, firmware and software updates are automatically
downloaded and installed when the devices are connected.
Thus the two devices used for testing should be running the
latest firmware and our findings can be generalized for all
devices on the market of the same kind. Both devices con-
tain a physical "microphone-off" button that is supposed to
turn off the microphone and thus not capture any voice input.
We captured and analyzed five traces for each device in the
following situations:

1. Five minute trace with the mic off and no user talking

2. Five minute trace with the mic off and user talking

3. Five minute trace with the mic on and no user talking

4. Five minute trace with the mic on and user talking

5. Thirty minute trace with the mic on and user normally
using the device

For experiment 2 and 4, the user reads a specially-designed,
163-word paragraph in whole or in part. This bag of sentences
is set up to contain a set of keywords as diverse as possible.
It includes geographical locations, upcoming holidays, event
names on the user’s calendar, recent news headlines, and
names of large technology companies. One sentence among
them contains the wake word for the tested voice assistant
device and asks about the local weather in the upcoming week.
This design aims to test the voice assistant’s behavior under a
large range of topics, where it may be sensitive to some but
not others. The entire paragraph is attached in Appendix A.

4.1 Amazon Echo Dot

The five traces for Amazon Echo Dot are gathered first as
shown in Figure 2 for the four 5-minute traces and Figure 3
for the 30-minute trace. The grey dots on top of each graph
denote the moments when the user is talking (either to the
voice assistant or not); the orange dots denote a subset of
these moments when the user is talking to the voice assistant
started with the wake word "Alexa".

4.1.1 5-Minute Traces

First, we have the following key observations from the 5-
minute traces in Figure 2.

First, there are occasional traffic spikes when the physical
microphone is turned off, where Trace 1 (top-left) shows
three such spikes for incoming traffic of 20 KB or more each.
Trace 2 (bottom-left) shows one spike for outgoing traffic
of about 25 KB. Further analysis of the traffic dump shows
about half of the transmissions are HTTP traffic in plaintext
and the other half are TLS-encrypted HTTPS traffic, both
using TCP with random ports on multiple remote servers
managed by Amazon. Almost all the non-encrypted traffic
are HTTP request-response pairs to http://spectrum.s3.
amazonaws.com/kindle-wifi/wifistub.html. The link
points to a short web page that is titled "Kindle Reachability
Page" and only contains a UUID-like string in the body. We
guess that this is a heartbeat message from the Echo Dot
used for periodic checking of its connections to the backend
services. These messages were sent frequently during the
experiment probably due to a lossy Internet connection, as
the device was placed far away from the Wi-Fi router across
multiple walls and may have experienced a long Round-Trip
Time of the request-response. The other half of the traffic
in Trace 1 is completely TLS-encrypted. We attempted to
subvert this by having our Man-in-the-Middle attack present
self-signed TLS certificates to fool the Echo Dot, but the
Dot simply drops all packets in these connections. Thus,
it’s impossible to decrypt the content of these encrypted data
packets and accurately speculating about the encrypted traffic
is difficult.

Second, the Echo Dot is transmitting data as long as the

4

http://spectrum.s3.amazonaws.com/kindle-wifi/wifistub.html
http://spectrum.s3.amazonaws.com/kindle-wifi/wifistub.html


Figure 2: 5-minute traces of Amazon Echo Dot: Top-left: microphone off and no user talking. Bottom-left: microphone
off and user talking. Top-right: microphone on and no user talking. Bottom-right: microphone on and user talking.

Figure 3: 30 minute trace of Amazon Echo Dot with the
mic on and talking. Grey spots are the moments that
user speaks the wake word and talks with the device.

Figure 4: Some chosen statistics of the 30 minute Echo
Dot trace.

device’s physical microphone is turned on, even if the user is
not talking. This conclusion draws from the graph of Trace
3 (top-right): data packets have been sent out continuously
and the rate of outgoing traffic stays at slightly above 100
bytes per five packets sent. These transmissions are all TCP
traffic and contain both non-encrypted heartbeat messages
and TLS-encrypted packets in our experiment.

Third, in the normal case where the microphone is turned
on and the user is asking questions, the Echo Dot keeps trans-
mitting and receiving data after each "question-answer ses-
sion" between the user and the device. As seen from Trace
4 (bottom-right), there’s a spike of incoming and outgoing
traffic each time the user speaks the wake word and asks
the voice assistant a question and the device provides an an-
swer. This traffic is considered reasonable as the device sends
relevant text or audio data to the related back-end services
for natural language understanding or information lookup.
What is concerning is the larger spike of data exchange after
a brief pause when the communication session is finished and
before the user asks the next question. This spike of traffic fol-
lows every question-answer session in our test, and transmits
and receives almost twice the data as was exchange during
the session. All conversation-related network traffic is TLS-
encrypted, so unfortunately we are not able to further inspect
the packets’ contents. We guess that it may be some data pre-
fetching based on prediction of the user’s future interaction
with the device given the user’s previous behavior.

5



4.1.2 30-Minute Trace

For the first half of this 30-minute experiment, the user asks
the device regular questions, such as weather forecast and
calendar events, and performs common tasks, such as setting
up alarm clocks. The user remains silent during the second
half. Besides the traffic pattern shown in Figure 3, we will
now focus on analyzing the end-to-end traffic quantitatively.
Some end-to-end statistics are shown in Figure 4.

First, the Echo Dot has communicated with a total of 33
remote hosts over this 30 minutes. Using a Network Informa-
tion Center (NIC) database lookup of their IP addresses, we
determined all the endpoints belonged to Amazon Inc. More
than 98.99% of the connections are global connections where
the device connects to one of those remote back-end servers.
Meanwhile, the remaining connections are local, with the
Echo Dot communicating with a device in the same user’s
home Wi-Fi network. These devices can be the user’s laptop,
smartphone, tablet, etc. and we leave further investigation as
future work. We guess it’s likely that the device is connecting
to the user’s iPhone in this experiment, because the iPhone
has the Alexa app installed and has paired with the Echo
Dot. Thus, the IoT device is able to pull in user’s personal
data such as calendar events and emails from the iPhone for
quicker responses. The Echo Dot has generated a total of
about 3.8 MB incoming traffic and 2.7 MB outgoing traffic in
this experiment.

4.2 Google Home Mini
4.2.1 5-Minute Traces

The five Google Home Mini traces paint a radically different
picture than what we observed in the Amazon Echo Dot. Here
even with the microphone off, a physical off-switch, (top left,
and bottom left in figure 5) the traces show that the network
is still being constantly used. Fortunately, they do not change
regardless of the user talking, but it is concerning there is still
so much traffic (far more than the minute heartbeat messages
that the Alexa was doing). Upon a deeper dive, we saw 2 types
of traffic requests: an unencrypted multi-cast DNS request to
224.0.0.251 that effectively acted as the heartbeat message
and then encrypted connections to other local devices on the
network such as other laptops and phones. We are not too
sure what these encrypted connections are sending, whether
it is just "reachability" of the Home Mini from other devices
for sound casting purposes, or something else entirely. The
Mini does stop sending packets at the 3 min 30 seconds mark
for about a minute before resuming its "normal" activity.

What is even more peculiar though is that when the micro-
phone is turned on, (top right and bottom right in figure 5)
the traces show that the network traffic does not change from
when the microphones are off. This is understandable if the
user is not talking, but when a query is asked, the Home Mini
does not request data from a Google server but is still able to

answer! We suspect that it may either be piggy backing off
some of the local connections that it does with other devices
on the LAN or through some pre-fetching/caching capability.
The question we asked was not super uncommon, so it is
possible that it may have the answer stored locally (perhaps
carried via one of the encrypted local connections).

4.2.2 30-Minute Trace

Finally, we also captured a 30 minute trace where we talked
casually in front of the Home Mini and asked it to do various
tasks (i.e. stream music). Figures 6 and 7 portray the trace
and some statistics respectively. First of all, we continue to
see the local connections and the periodic mDNS connections
running throughput the entire 30 minutes. We can also see
here that when we asked it to stream music from Spotify or
Youtube Music, there is a flurry of incoming packets that
carry the music. However these do not hit Spotify servers
or even the Google servers but rather a CDN, Fastly. We
also asked it a barrage of questions, some more random than
others, i.e. "Who was the sixth viking king of Norway?", and
"What is DECA?, along with followups like "Tell me more".
During these two sessions, shown in the black curly brackets
in Figure 6, we finally see more traffic being generated! The
answers to these questions were not cached, and it we also
see the Home Mini hit three different Google IP addresses to
answer these questions, but also maintain these connections
to transfer more data for other potential questions (again the
time span of the black curly brackets). The local connections
to devices on the LAN remain during this time however. In
total a little over 1.5 Mb of data was sent to the Home Mini,
but during the same time it also sent out 415 Kb of data to
local connections as well as the Fastly CDN and the Google
IP addresses. What exactly is being sent is unknown since it
was mostly encrypted except for the mDNS requests.

5 Future Work

While IoTShark can currently monitor and save the traffic of
any IoT device (and really any device so long as the correct IP
address is provided) there are still a few things that we wish
to work on for future iterations.

An interesting paper in this space aims to classify events
in different IoT streams, in particular focusing on classifying
when a Nest Camera is live streaming data vs motion detect-
ing, when an Alexa is transmitting data back to the server [1].
We intended to do this classification but quickly realized that
we would need to collect vast amounts of data from sources
that are not just the three of us. However as a future task,
we intend to build off of the work from this paper to detect
and classify IoT traffic, initially for smart assistants and later
for other devices. Consequently this is also the paper that
inspired IoTInspector, a similar tool created and maintained
by Princeton University.

6



Figure 5: 5-minute traces of Google Home Mini: Top-left: microphone off and no user talking. Bottom-left: microphone
off and user talking. Top-right: microphone on and no user talking. Bottom-right: microphone on and user talking.

Figure 6: 30 minute trace with the mic on and talking.
Dark green spots are music streaming requests, green

and red are start/stop talking.

Figure 7: Some chosen statistics of the 30 minute Home
Mini trace.

7



We also want to include an anomaly detection feature,
where given some traces of "defined behavior" as ground
truth, other traces can be compared for abnormal traffic pat-
terns. These may be caused by changes in the services of
the IoT devices or say in the example of huge traffic being
generated when no user is in a home (perhaps someone has
broken into the house!). Similar to the trace classification
problem though, this requires immense amounts of data to
detect what is "normal" and therefore what is "abnormal".

Finally, due to the necessity of physical hardware for this
project, we were only able to gather traces from Amazon
Alexa and Google Home. However, if given the resources, we
also wanted to gather traces from Apple Siri and Microsoft
Cortana devices (along with other non-smart-speaker IoT de-
vices) to compare the traces and detect if any funny business
is occurring here. At the time of writing this paper, we could
find no blog post or research paper tracing the two other smart
assistants (Siri and Cortana).

6 Conclusion

IoT devices continue to rise in popularity, but remain as ven-
dor controlled as ever. While we cannot see the data inside
the transported packets, we can capture the raw traffic and
make inferences based on it. Unfortunately, understanding
the nuances of how to setup up a computer, router, and other
properties are time consuming for most computer scientists
with limited experience in this domain, and beyond the scope
of the common individual. We believe that everyone should
have the ability to see who their devices are talking to and how
often, and neither Wireshark nor Ettercap can easily produce
this information. IoTShark is our solution to this issue and
allows individuals to quickly hook onto and capture traffic
information from IoT devices, analyze the data statically, and
visualize it in network graphs. We hope that other researchers

can use this tool to quickly bootstrap their IoT work, and
the average individual can look into what their device is do-
ing at a high level! The code and raw data is available at
https://github.com/sahilmgandhi/IotShark.

References

[1] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A
smart home is no castle: Privacy vulnerabilities of en-
crypted iot traffic. CoRR, abs/1705.06805, 2017.

[2] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan Zhang.
Your voice assistant is mine: How to abuse speakers to
steal information and control your phone. In Proceedings
of the 4th ACM Workshop on Security and Privacy in
Smartphones &#38; Mobile Devices, SPSM ’14, pages
63–74, New York, NY, USA, 2014. ACM.

[3] Amir Ghadiry. Is my google home spying on me?, Apr
2017.

[4] Danny Yuxing Huang, Noah Apthorpe, Gunes Acar,
Frank Li, and Nick Feamster. Iot inspector: Crowd-
sourcing labeled network traffic from smart home devices
at scale, 2019.

[5] Maik Morgenstern and Maik Morgenstern. Careless
whisper: Does amazon echo send data in silent mode?,
Jul 2018.

[6] Market Reports. Global voice assistant market analysis
& forecast 2017 to 2023, Jul 2017.

[7] Judson Wilson, Riad Wahby, Henry Corrigan-Gibbs, Dan
Boneh, Philip Levis, and Keith Winstein. Trust but verify:
Auditing the secure internet of things. In Proceedings of
the 15th MobiSys, pages 464–474. ACM, 2017.

8

https://github.com/sahilmgandhi/IotShark


A Paragraph Spoken to Device

It is a dark and stormy night. My friends and I just came back from the Yosemite National Park, where the quick brown fox
jumps over the lazy dog. Next week is Thanksgiving. Black Friday in 2019 is coming as well. It’s a good time to do something
exciting, such as taking a Computer Security class or a Programming Language class at UCLA. By the way, the first Airbus
A380 jumbo jet is retiring. We like flying in that plane.

WAKE_WORD, what is the weather like in Los Angeles on Thanksgiving?
Anyways, we have Boeing 787 Dreamliners for cross-continental flights. The Web and Mobile System class with Ravi is

amazing. We should upgrade the commercial laundry machine during the Black Friday sale. The bright and sunny weather is
coming back and a trip to Joshua Tree National Park awaits. Well, I just saw a slow cat crashed into a new Android robot. There
are some other robots made by Apple and Amazon too.

9


	Introduction
	Background and Motivation

	Related Work
	System Overview
	Host Discovery and Man-in-the-Middle Attack
	Sniffing the Traffic
	Graph Generation and Statistics

	Evaluation
	Amazon Echo Dot
	5-Minute Traces
	30-Minute Trace

	Google Home Mini
	5-Minute Traces
	30-Minute Trace


	Future Work
	Conclusion
	Paragraph Spoken to Device

